Кинетическая энергия vs потенциальная энергия

Потенциальная и кинетическая энергия позволяют охарактеризовать состояние любого тела. Если первая применяется в системах взаимодействующих объектов, то вторая связана с их движением. Эти виды энергии, как правило, рассматриваются тогда, когда сила, связывающая тела, независима от траектории движения. При этом важны только начальное и конечное их положения.

Общие сведения и понятия

Кинетическая энергия системы является одной из важнейших ее характеристик. Физики выделяют два вида такой энергии в зависимости от вида движения:

Поступательная;

Вращения.

Кинетическая энергия (Е к) представляет собой разность между полной энергией системы и энергией покоя. Исходя из этого, можно сказать, что она обусловлена движением системы. Тело имеет ее только тогда, когда оно движется. В состоянии покоя объекта она равняется нулю. Кинетическая энергия любых тел зависит исключительно от скорости движения и их масс. Полная энергия системы находится в прямой зависимости от скорости ее объектов и расстояния между ними.

Основные формулы

В том случае, когда любая сила (F) действует на тело, находящееся в покое так, что оно приходит в движение, можно говорить о совершении работы dA. При этом величина этой энергии dE будет тем выше, чем больше совершается работы. В этом случае верно такое равенство: dA = dE.

С учетом пути, пройденного телом (dR) и его скорости (dU), можно воспользоваться 2 законом Ньютона, исходя из которого: F = (dU/dE)*m.

Вышеуказанный закон используется только тогда, когда имеется инерциальная система отсчета. Существует еще один важный нюанс, учитываемый при расчетах. На значение энергии влияет выбор системы. Так, согласно системе СИ, она измеряется в джоулях (Дж). Кинетическая энергия тела характеризуется массой m, а также скоростью перемещения υ. В этом случае она составит: E k = ((υ*υ)*m)/2.

Исходя из вышеуказанной формулы, можно сделать вывод, что кинетическую энергию определяют массой и скоростью. Иными словами, она представляет собой функцию движения тела.

Энергия в механической системе

Кинетическая энергия представляет собой энергию механической системы. Она зависит от скорости движения ее точек. Данная энергия любой материальной точки представляется такой формулой: E = 1/2mυ 2, где m - масса точки, а υ - ее скорость.

Кинетическая энергия механической системы являет собой арифметическую сумму таких же энергий всех ее точек. Ее также можно выразить следующей формулой: E k = 1/2Mυ c2 + Ec, где υc — скорость центра масс, М - масса системы, Ec - кинетическая энергия системы при движении вокруг центра масс.

Энергия твердого тела

Кинетическая энергия тела, которое движется поступательно, определяется как и такая же энергия точки с массой, равной массе всего тела. Для расчета показателей при перемещении применяются более сложные формулы. Изменение этой энергии системы в момент ее перемещения из одного положения в другое происходит под воздействием приложенных внутренних и внешних сил. Оно равняется сумме работ Aue и A"u данных сил при этом перемещении: E2 - E1 = ∑u Aue + ∑u A"u.

Данное равенство отражает теорему, касающуюся изменения кинетической энергии. С ее помощью решаются самые разные задачи механики. Без этой формулы невозможно решить целый ряд важнейших задач.

Кинетическая энергия при высоких скоростях

Если скорости тела близки к скорости света, кинетическую энергию материальной точки можно рассчитать по следующей формуле:

E = m0c2/√1-υ2/c2 - m0c2,

где с - скорость света в вакууме, m0 - масса точки, m0с2 - энергия точки. При маленькой скорости (υ

Энергия при вращении системы

Во время вращения тела вокруг оси каждый его элементарный объем массой (mi) описывает окружность радиусом ri. В этот момент объем имеет линейную скорость υi. Поскольку рассматривается твердое тело, угловая скорость вращения всех объемов будет одинакова: ω = υ1/r1 = υ2/r2 = … = υn/rn (1).

Кинетическая энергия вращения твердого тела представляет собой сумму всех таких же энергий его элементарных объемов: E = m1υ1 2/2 + miυi 2/2 + … + mnυn 2/2 (2).

При использовании выражения (1), получаем формулу: E = Jz ω 2/2, где Jz - это момент инерции тела вокруг оси Z.

При сравнении всех формул становится ясно, что момент инерции - это и есть мера инертности тела во время вращательного движения. Формула (2) подходит для объектов, вращающихся относительно неподвижной оси.

Плоское движение тела

Кинетическая энергия тела, движущегося вниз по плоскости, складывается из энергии вращения и поступательного движения: E = mυc2/2 + Jz ω 2/2, где m - масса движущегося тела, Jz - момент инерции тела вокруг оси, υc - скорость центра масс, ω - угловая скорость.

Изменение энергии в механической системе

Изменение значения кинетической энергии тесно связано с потенциальной. Суть этого явления можно понять благодаря закону сохранения энергии в системе. Сумма E + dP во время перемещения тела всегда будет одинаковой. Изменение значения E всегда происходит одновременно с изменением dP. Таким образом, они преобразуются, словно перетекая друг в друга. Такое явление можно встретить практически во всех механических системах.

Взаимосвязь энергий

Потенциальная и кинетическая энергии тесно связаны между собой. Их сумму можно представить как полную энергию системы. На молекулярном уровне - это внутренняя энергия тела. Она присутствует постоянно, пока существует хотя бы какое-то взаимодействие между телами и тепловое движение.

Выбор системы отсчета

Для проведения вычисления значения энергии выбирают произвольный момент (его считают начальным) и систему отсчета. Определить точную величину потенциальной энергии возможно только в зоне воздействия сил, которые не зависят от траектории движения тела при совершении работы. В физике данные силы называют консервативными. Они имеют постоянную связь с законом сохранения энергии.

Суть разницы между потенциальной и кинетической энергией

Если внешнее воздействие минимально или сводится к нулю, изучаемая система всегда будет тяготеть к состоянию, в котором ее потенциальная энергия также будет стремиться к нулю. Например, подброшенный вверх мячик достигнет предела этой энергии в верхней точке траектории движения и в тот же момент начнет падать вниз. В это время накопленная в полете энергия преобразуется в движение (выполняемую работу). Для потенциальной энергии в любом случае существует взаимодействие как минимум двух тел (в примере с мячиком гравитация планеты оказывает на него влияние). Кинетическую энергию можно рассчитать индивидуально для любого движущегося тела.

Взаимосвязь разных энергий

Потенциальная и кинетическая энергия изменяются исключительно при взаимодействии тел, когда действующая на тела сила совершает работу, значение которой отлично от нуля. В замкнутой системе работа силы тяготения или упругости равняется изменению потенциальной энергии объектов со знаком «-»: A = - (Ep2 - Ep1).

Работа силы тяготения или упругости равняется изменению энергии: A = Ek2 - Ek1.

Из сравнения обоих равенств ясно, что изменение энергии объектов в замкнутой системе равняется изменению потенциальной энергии и противоположно ему по знаку: Ek2 - Ek1 = - (Ep2 - Ep1), или иначе: Ek1 + Ep1 = Ek2 + Ep2.

Из указанного равенства видно, что сумма этих двух энергий тел в замкнутой механической системе и взаимодействующих силами упругости и тяготения, всегда остается постоянной. Исходя из вышеизложенного, можно сделать вывод о том, что в процессе изучения механической системы следует рассматривать взаимодействие потенциальной и кинетической энергий.

Кинети́ческая эне́ргия -скалярная функция, являющаяся мерой движения материальной точки и зависящая только отмассыимодуляскоростиматериальных точек, образующих рассматриваемую физическую систему ,энергиямеханической системы, зависящая отскоростейдвижения её точек в выбраннойсистеме отсчёта. Часто выделяют кинетическую энергиюпоступательногоивращательногодвижения.

Более строго, кинетическая энергия есть разность между полной энергией системы и её энергией покоя; таким образом, кинетическая энергия - частьполной энергии, обусловленнаядвижением .

Простым языком, кинетическая энергия - это энергия, которую телоимеет только при движении. Когдателоне движется, кинетическая энергия равна нулю.

Физический смысл

Рассмотрим систему, состоящую из одной частицы, и запишем второй закон Ньютона:

Есть равнодействующая всехсил, действующих на тело.Скалярно умножимуравнение наперемещениечастицы. Учитывая, что, получим:

Если система замкнута, то есть внешние по отношению к системе силы отсутствуют, или равнодействующая всех сил равна нулю, то, а величина

остаётся постоянной. Эта величина называется кинетической энергией частицы. Если система изолирована, то кинетическая энергия являетсяинтегралом движения.

Для абсолютно твёрдого телаполную кинетическую энергию можно записать в виде суммы кинетической энергии поступательного и вращательного движения:

Масса тела

Скоростьцентра масстела

Момент инерциителакг·м²

Угловая скоростьтела. рад/с

Найдем кинетическую энергию при различных случаях движения:

1. Поступательное движение

Скорости всех точек системы равны скорости центра масс . Тогда

Кинетическая энергия системы при поступательном движении равна половине произведения массы системы на квадрат скорости центра масс.

2. Вращательное движение (рис. 77)

Скорость любой точки тела: . Тогда

или используя формулу (15.3.1):

Кинетическая энергия тела при вращении равна половине произведения момента инерции тела относительно оси вращения на квадрат его угловой скорости.

3. Плоскопараллельное движение

При данном движении кинетическая энергия складывается из энергии поступательного и вращательных движений

Общий случай движения дает формулу, для вычисления кинетической энергии, аналогичную последней.

Определение работы и мощности мы сделали в параграфе 3 главы 14. Здесь же мы рассмотрим примеры вычисления работы и мощности сил действующих на механическую систему.

Физический смысл работы

Работавсех сил, действующих на частицу при её перемещении, идёт на приращение кинетической энергии частицы :

Свойства кинетической энергии

Аддитивность. Это свойство означает, что кинетическая энергия механической системы, состоящей из материальных точек, равна сумме кинетических энергий всех материальных точек, входящих в систему.

Инвариантность по отношению к повороту системы отсчета. Кинетическая энергия не зависит от положения точки, направления её скорости и зависит лишь от модуля скорости или, что то же самое, от квадрата её скорости.

Сохранение. Кинетическая энергия не изменяется при взаимодействиях, изменяющих лишь механические характеристики системы.Это свойство инвариантно по отношению к преобразованиям Галилея Свойства сохранения кинетической энергии и второго закона Ньютона достаточно, чтобы вывести математичекую формулу кинетической энергии.

Релятивизм

При скоростях, близких к скорости света, кинетическая энергия любого объекта равна

Массаобъекта;

Скоростьдвижения объекта в выбранной инерциальной системе отсчета;

Скорость светав вакууме (-энергия покоя).

Данную формулу можно переписать в следующем виде:

При малых скоростях () последнее соотношение переходит в обычную формулу.

Соотношение кинетической и внутренней энергии

Кинетическая энергия зависит от того, с каких позиций рассматривается система. Если рассматривать макроскопический объект (например, твёрдое тело видимых размеров) как единое целое, можно говорить о такой форме энергии, как внутренняя энергия. Кинетическая энергия в этом случае появляется лишь тогда, когда тело движется как целое.

То же тело, рассматриваемое с микроскопической точки зрения, состоит из атомовимолекул, и внутренняя энергия обусловлена движением атомов и молекул и рассматривается как следствиетеплового движенияэтих частиц, а абсолютная температура тела прямо пропорциональна средней кинетической энергии такого движения атомов и молекул. Коэффициент пропорциональности -Постоянная Больцмана.

Кинетическая энергия - это, согласно определению, величина, равная половине массы движущегося тела, умноженного на квадрат скорости этого тела. Это - один из важнейших терминов современной механики. Если коротко выразиться, то это энергия движения, или разность полной энергии и энергии покоя. Все же сущность ее не до конца рассмотрена в современной науке.

Кинетическая энергия (от гр. Kinema - движение) тела, находящегося в состоянии

Неподвижности, равна нулю. Нередко эту величину связывают не только с массой и скоростью. Так, согласно одному определению, кинетическая энергия - это работа, совершаемая при определенной скорости. Измеряется в джоулях.

Кинетическая энергия системы - это величина, которая тесно связана со скоростью каждой из ее точек.

Ее рассматривают как в поступательном движении, так и во вращательном. Первый случай уже был подробно разъяснен выше, это - половина массы какого-либо объекта, умноженной на его скорость в квадрате. А кинетическая энергия вращения тела представляется как сумма кинетических энергий каждого из элементарных объемов данного тела. Или как значение момента инерции, умноженное на квадрат угловой скорости, деленное на два.

Допустим, имеется какое-либо твердое тело, которое совершает движение вокруг оси

неподвижной, проходящей через него. Этот объект можем разбить на небольшие элементарные объемы, каждый из которых имеет свою элементарную массу. Вокруг неподвижной оси рассматриваемое тело совершает движения. При этом каждый из элементарных объемов описывает окружность соответствующего радиуса. Одинакова их вращения. И поэтому кинетическая энергия данного тела - это сумма кинетических энергий всех его элементарных, двигающихся вокруг оси объемов. Упрощенный вариант этой формулы - половина произведения квадрата угловой скорости и момента инерции.

В некоторых случаях кинетическая энергия - это сумма и поступательной, и вращательной энергии. Например, скатывающийся без скольжения по наклонной линии цилиндр. Двигаясь вперед, он выполняет однако, при этом он еще и двигается вокруг своей оси.

Одна из составляющих кинетической энергии вращения - это о котором выше и говорилось. Он зависит от общей массы тела, а также от ее распределения по отношению к оси вращения. Что же это такое? Это мера инертности движения вокруг оси так же, как в поступательном движении мерой инертности является масса. Это весьма важная величина. Чем момент инерции больше, тем труднее привести тело в состояние вращения. Угловая скорость характеризует то, с какой быстротой движется твердое тело вокруг своей оси. Единицей измерения является рад/с. Угловая скорость представляет собой отношение угла поворота к тому промежутку времени, за который этот угол проходит вращающийся объект.

Теорему о кинетической энергии можно сформулировать примерно так: работа силы, равнодействующей, приложенной к определенному телу, равнозначна изменению кинетической энергии данного тела.

>>Физика 10 класс >>Физика: Кинетическая энергия и ее изменение

Кинетическая энергия

Кинетическая энергия - это энергия тела, которую оно имеет вследствие своего движения.

Если говорить простым языком, то под понятием кинетической энергии следует подразумевать только ту энергию, которую имеет тело при движении. Если же тело пребывает в состоянии покоя, то есть, совершенно не движется, тогда кинетическая энергия будет равняться нулю.

Кинетическая энергия равняется той работе, которую она должна затратить, чтобы вывести тело из состояния покоя в состояние движения с какой-то скоростью.

Следовательно, кинетическая энергия является разностью между полной энергией системы и её энергией покоя. Иначе говоря, что кинетическая энергия будет частью полной энергии, которая обусловленная движением.

Давайте попробуем разобраться в понятии кинетической энергии тела. Для примера возьмем движение шайбы по льду и попробуем понять связь между величиной кинетической энергии и работой, которая должна быть выполнена, чтобы вывести шайбу из состояния покоя и привести ее в движение, имеющее некоторую скорость.

Пример

Играющий на льду хоккеист, ударив клюшкой по шайбе сообщает ей скорость, а так и кинетическую энергию. Сразу после удара клюшкой, шайба начинает очень быстрое движение, но постепенно ее скорость замедляется и наконец, она совсем останавливается. Это значит, что уменьшение скорости явилось результатом силы трения, происходящей между поверхностью и шайбой. Тогда сила трения будет направлена против движения и действия этой силы сопровождаются перемещением. Тело же использует имеющую механическую энергию, выполняя работу против силы трения.

Из этого примера мы видим, что кинетическая энергия будет той энергией, которую тело получает в результате своего движения.

Следовательно, кинетическая энергия тела, имеющая определенную массу, будет двигаться со скоростью равной той работе, которую должна выполнить сила, приложенная к покоящемуся телу, чтобы сообщить ему данную скорость:

Кинетическая энергия является энергией движущегося тела, которая равняется произведению массы тела на квадрат его скорости, деленной пополам.


Свойства кинетической энергии

К свойствам кинетической энергии относятся: аддитивность, инвариантность по отношению к повороту системы отсчета и сохранение.

Такое свойство, как аддитивность являет собой кинетическую энергию механической системы, которая слагается из материальных точек и будет равна сумме кинетических энергий всех материальных точек, которые входят в эту систему.

Свойство инвариантности по отношению к повороту системы отсчета обозначает, что кинетическая энергия не зависит от положения точки и направления её скорости. Ее зависимость распространяется лишь от модуля или от квадрата её скорости.

Свойство сохранения обозначает, что кинетическая энергия при взаимодействиях, изменяющих лишь механические характеристики системы, совершенно не изменяется.

Это свойство неизменно по отношению к преобразованиям Галилея. Свойства сохранения кинетической энергии и второго закона Ньютона будет вполне достаточно, для выведения математической формулы кинетической энергии.

Соотношение кинетической и внутренней энергии

Но существует такая интересная дилемма, как то, что кинетическая энергия может быть зависимой от того, с каких позиций рассматривать эту систему. Если, например, мы берем объект, который можно рассмотреть только под микроскопом, то, как единое целое, это тело неподвижно, хотя существует и внутренняя энергия. При таких условиях кинетическая энергия появляется только тогда, когда это тело движется, как единое целое.

То же тело, если рассматривать на микроскопическом уровне, обладает внутренней энергией, обусловленной движением атомов и молекул, из которых оно состоит. А абсолютная температура такого тела будет пропорциональна средней кинетической энергии такого движения атомов и молекул.

Кинетическая энергия - скалярная физическая величи­на, равная половине произведения массы тела на квадрат его скорости.

Что бы понять, что же такое кинетическая энергия тела, рассмотрим случай, когда тело массой m под действием постоянной силы (F=const) движется прямолинейно равноускоренно (а=const). Определим работу силы, приложенной к телу, при изменении модуля скорости этого тела от v1 до v2.

Как мы знаем, работа постоянной силы вычисляют по формуле . Так как в рассматриваемом нами случае направление силы F и перемещения s совпадают, то , и тогда у нас получается, что работа силы равна А=Fs. По второму закону Ньютона найдем силу F=ma. Для прямолинейного равноускоренного движения справедлива формула:

Из это формулы мы выражаем перемещение тела:

Подставляем найденные значения F и S в формулу работы, и получаем:

Из последней формулы видно, что работа силы, приложенной к телу, при изменении скорости этого тела равна разности двух значений некоторой величины . А механическая работа это и есть мера изменения энергии. Следовательно, в правой части формулы стоит разность двух значений энергии данного тела. Это значит, что величина представляет собой энергию, обусловленную движением тела. Эту энергию называют кинетической. Она обозначается Wк.

Если взять выведенную нами формулу работы, то у нас получится

Работа, совершаемая силой при изменении скорости тела, равна изменению кинетической энергии этого тела

Так же есть:

Потенциальная энергия:

В формуле мы использовали:

Кинетическая энергия

Масса тела

Скорость движения тела