Потенциальная энергия взаимодействия молекул. Силы и потенциальная энергия межмолекулярного взаимодействия Зависимость потенциальной энергии от расстояния

Если массу молекулы тела обозначить , а скорость ее поступательного движения , то кинетическая энергия поступательного движения молекулы будет равна

Молекулы тела могут иметь различные скорости и величину поэтому для характеристики состояния тела используется средняя энергия поступательного движения

где - общее число молекул в теле. Если все молекулы одинаковы, то

Здесь обозначает среднюю квадратичную скорость хаотического движения молекул:

Поскольку между молекулами имеются силы взаимодействия, то молекулы тела, кроме кинетической энергии, обладают потенциальной энергией. Будем считать потенциальную энергию уединенной молекулы, не взаимодействующей с другими молекулами, равной нулю. Тогда при взаимодействии двух молекул потенциальная энергия, обусловленная силами отталкивания, будет положительной, а силами притяжения - отрицательной (рис. 2.1, б), поскольку при сближении молекул для преодоления сил отталкивания надо выполнить определенную работу, а силы притяжения, наоборот, сами совершают работу. На рис. 2.1, б показан график изменения потенциальной энергии взаимодействия двух молекул в зависимости от расстояния между ними. Часть графика потенциальной энергии вблизи ее наименьшего значения называют потенциальной ямой, а величину наименьшего значения энергии - глубиной потенциальной ямы.

При отсутствии кинетической энергии молекулы расположились бы на расстоянии которое соответствует их устойчивому равновесию, так как равнодействующая молекулярных сил в этом случае равна нулю (рис. 2.1, а), а потенциальная энергия минимальна. Чтобы удалить друг от друга молекулы, нужно совершить работу по преодолению сил взаимодействия молекул,

равную по величине (другими словами, молекулы должны преодолеть потенциальный барьер высотой

Так как в действительности молекулы всегда обладают кинетической энергией, то расстояние между ними непрерывно изменяется и может быть как больше, так и меньше . Если кинетическая энергия молекулы В будет меньше например на рис. то молекула будет двигаться в пределах потенциальной ямы. Преодолевая противодействие сил притяжения (или отталкивания), молекула В может удаляться от А (или сближаться) до расстояний, при которых вся ее кинетическая энергия превращается в потенциальную энергию взаимодействия. Эти крайние положения молекулы определяются точками на потенциальной кривой на уровне от дна потенциальной ямы (рис. 2.1, б). Затем силы притяжения (или отталкивания) отбрасывают молекулу В от этих крайних положений. Таким образом, силы взаимодействия удерживают молекулы друг возле друга на некотором среднем расстоянии .

Если кинетическая энергия молекулы В больше Ямив (Епост» на рис. 2.1, б), то она преодолеет потенциальный барьер и расстояние между молекулами может возрастать неограниченно.

Когда молекула движется в пределах потенциальный ямы, то чем больше ее кинетическая энергия ( на рис. 2.1, б), т. е. чем выше температура тела, тем больше становится среднее расстояние между молекулами Этим объясняется расширение твердых тел и жидкостей при нагревании.

Увеличение среднего расстояния между молекулами объясняется тем, что график потенциальной энергии слева от поднимается гораздо круче, чем справа. Такая асимметрия графика получается вследствие того, что силы отталкивания уменьшаются при увеличении значительно быстрее, чем силы притяжения (рис. 2.1, а).


Столкновением молекул будем называть процесс их взаимодействия, в результате которого изменяются скорости молекул .

Характер взаимодействия молекул можно представить, если рассмотреть зависимость потенциальной энергии взаимодействия молекул от расстояния между их центрами. Эта зависимость имеет вид, приближенно показанный на рисунке 11.2.

Представим, что одна молекула находится в начале координат, а вторая приближается к ней из «бесконечности», имея очень небольшую кинетическую энергию. На расстояниях, превышающих , взаимодействие молекул имеет характер притяжения. Действительно, для с увеличением расстояния между молекулами потенциальная энергия возрастает. Это означает, что ее градиент направлен в сторону увеличения расстояния между молекулами, а сила взаимодействия () направлена в сторону уменьшения расстояния между молекулами. Поэтому при сближении молекул их взаимная скорость возрастает: потенциальная энергия взаимодействия преобразуется в кинетическую, приближающаяся молекула разгоняется.

На расстояниях менее притяжение сменяется быстро возрастающим отталкиванием. Потенциальная энергия взаимодействия резко возрастает (кинетическая преобразуется в потенциальную), и при ее равенстве начальной кинетической энергии молекулы останавливаются. Далее происходят обратные процессы, молекулы разлетаются.

Минимальное расстояние d, на которое сближаются при соударении центры молекул, называется эффективным диаметром молекулы . Величина называется эффективнымсечениеммолекулы . равно площади поперечного сечения цилиндра, по оси которого движется данная молекула, такого, что если центр другой молекулы попадает в объем цилиндра, то молекулы должны столкнуться.

Понятно, что при увеличении температуры центры молекул при соударениях будут сближаться сильнее, поэтому эффективный диаметр зависит от температуры . Следует иметь в виду, что рост потенциальной энергии отталкивания происходит очень быстро, поэтому зависимость эффективного диаметра от температуры имеет место обязательно, но выражена не очень сильно .

За секунду молекула проходит в среднем путь, равный ее средней скорости . Если за секунду она претерпевает столкновений, тосредняядлинасвободногопробега молекулы

Для расчета предположим, что все молекулы, кроме данной, покоятся на своих местах. Ударившись об одну из неподвижных молекул, данная будет лететь прямолинейно до соударения с другой. Очередное столкновение произойдет в том случае, если центр неподвижной молекулы окажется от прямой, вдоль которой летит данная молекула, на расстоянии меньшим эффективного диаметра. За секунду молекула столкнется со всеми молекулами, центры которых попадают в объем коленчатого цилиндра с основанием и длинной, равной средней скорости . Если концентрация молекул равна n , то число соударений на этом пути

Необходимо учесть, что на самом деле движутся все молекулы, и в (11.9) необходимо учитывать не , а среднюю относительную скорость движения молекул, которая в раз больше. Тогда для средней длины свободного пробега l можем записать:

Представляет интерес количественная оценка l и . Будем считать, что в жидкости молекулы находятся на небольших расстояниях друг от друга. Тогда корень третьей степени из объема, приходящегося на одну молекулу, даст нам оценку размеров молекулы. Один моль воды занимает объем 18*10 -10 м3 и содержит число Авогадро 6*10 23 молекул. Тогда на одну молекулу приходится » 30*10 -30 м3 , а диаметр молекулы » 3*10 -10 м. При условиях, близких к нормальным, один моль газа занимает объем . Тогда концентрацию молекул при нормальных условиях можно оценить по формуле , а среднюю длину свободного пробега в соответствии с формулой (11.10)

Модель идеального газа, используемая в молекулярно-кинетической теории газов, позволяет описывать поведение разреженных реальных газов при достаточно высоких температурах и низких давлениях. При выводе уравнения состояния идеального газа размерами молекул и их взаимодействием друг с другом пренебрегают. Повышение давления приводит к уменьшению среднего расстояния между молекулами, поэтому необходимо учитывать объем молекул и взаимодействие между ними. Так, в 1 м 3 газа при нормальных условиях содержится 2,68 . 10 25 молекул, занимающих объем пример­но 10 -4 м 3 (радиус молекулы примерно 10 -10 м), которым по сравнению с объемом газа (1 м 3) можно пренебречь. При давлении 500 МПа (1 атм =101,3 кПа) объем молекул составит уже половину всего объема газа. Таким образом, при высоких давлениях и низких температурах указанная модель идеального газа непригодна.

При рассмотрении реальных газов - газов, свойства которых зависят от взаимо­действия молекул, надо учитывать силы межмолекулярного взаимодействия. Они прояв­ляются на расстояниях < 10 -9 м и быстро убывают при увеличении расстояния между молекулами. Такие силы называются короткодействующими.

В XX в., по мере развития представлений о строении атома и квантовой механики, было выяснено, что между молекулами вещества одновременно действуют силы притя­жения и силы отталкивания. На рис. 22 приведена качественная зависимость сил межмолекулярного взаимодействия от расстояния между молекулами. На очень малых расстояниях преобладают силы отталкивания , которые считаются положительными, а на больших - силы взаимного притяжения – которые считаются отрицательными, -их результирующая, причем

где - радиус вектор, проведенный в точку нахождения рассматриваемой молекулы из той точки, в которой находится другая молекула. Проекции F 1 r и F 2 r сил и на направление вектора зависят от расстояния между взаимодействующими молекулами. Примерный характер этой зависимости показан на рис. 22.

На расстоянии r = r 0 результирующая сила

F r = 0. Расстояние r 0 соответствует равновесному расстоянию между молекулами, на котором бы они находились в отсутствие теплового движения. При r< r 0 преобладают силы отталкивания (F r > 0), при r> r 0 – силы притяжения (F r < 0). На расстояниях > 10 -9 м межмолекулярные силы взаимодействия практически отсутствуют.

Рассмотрим взаимную потенциальную энергию W п двух молекул. Её можно найти следующим образом. Подсчитаем элементарную работу dА, совершаемую результирующей силой F r межмолекулярного взаимодействия.

dА = F r dr. (3. 1)

С другой стороны, эта работа совершается за счет уменьшения взаимной потенциаль­ной энергии молекул:



dА = -dW п (3. 2)

соответствующей тому значению r, для ко­торого нужно найти W п . Из уравнений (3.1) и (3.2) следует

dW п = - F r dr. (3. 3)

Интегрируя выражение (3.3) по r от r до ¥, получаем

На бесконечно большом расстоянии друг от друга молекулы не взаимодейству­ют. Поэтому взаимную потенциальную энергию Wn (¥) двух бесконечно удален­ных друг от друга молекул удобно при нять равной нулю. Окончательно,

Интеграл, стоящий справа, можно най­ти графически, если задана зависимость силы F r or r (рис. 23). Он пропорциона­лен площади, ограниченной кривой F r =F r (r), осью r и вертикалью (r = const),

При сближении молекул до расстояния r 0 их взаимная потенциальная энергия уменьшается, а кинетическая соответствен­но увеличивается. Это происходит за счет положительной работы, совершаемой ре­зультирующей силой взаимного притяжения молекул (при r > r 0 F r <0). Дальнейшее уменьшение расстояния между молекулами сопряжено с совершением ими работы про­тив результирующей силы взаимного от­талкивания молекул (при r 0). Со­ответственно взаимная потенциальная энер­гия молекул начинает расти с уменьшени­ем r. Характер зависимости W п от r пока­зан на рис. 23.

Если молекулы находятся достаточно далеко друг от друга, то их взаимная потен­циальная энергия равна нулю, а полная энергия W этой консервативной системы равна их кинетической энергии W к. К мо­менту максимального сближения молекул (r = r 1 ) вся их кинетическая энергия оказы­вается полностью израсходованной на со­вершение работы против сил отталкивания [W к (r 1) = 0], а их взаимная потенциаль­ная энергия W п (r 1) = 0 . При прочих рав­ных условиях расстояние r 1 тем меньше, чем выше температура газа. Однако зависимость W п от r в области положительных значений W п настолько «крутая», что даже значительные изменения температуры газа приводят к сравнительно небольшим изме­нениям величины r 1 . Поэтому в первом при­ближении можно считать, что r 1 зависит только от химической природы газа и пред­ставляет собой не что иное, как эффектив­ный диаметр d молекул. Из сказанного яс­но, что возможность представления моле­кул газа в виде твердых шариков диамет­ра d связана с очень быстрым увеличением сил взаимного отталкивания молекул ре­ального газа при уменьшении расстояния между ними.

Химическая связь образуется только в том случае, если при сближении атомов (двух или большего числа) полная энергия системы (сумма кинетической и потенциальной энергии) понижается.

Важнейшие сведения о строении молекул дает изучение зависимости потенциальной энергии системы от расстояния между составляющими ее атомами. Впервые эту зависимость изучили в 1927 году немецкие ученые У. Гейтлер и Ф. Лондон, исследуя причины возникновения химической связи в молекуле водорода. Используя уравнение Шредингера, они пришли к выводу, что энергия системы, состоящей в молекуле водорода из двух ядер и двух электронов, может быть выражена следующим образом:

Е = ~ К ± О ,

где К – кулоновский интеграл, включающий все электростатические взаимодействия, т.е. отталкивание между электронами, отталкивания между ядрами, а так же притяжение электронов к ядрам атомов. О – обменный интеграл, он характеризует возникновение электронной пары и обусловлен движением электронов вокруг обоих ядер водорода. Этот интеграл имеет очень большое отрицательное значение. Таким образом, по расчетам, энергия данной системы может принимать два значения:

Е = ~К + О и Е = ~К - О

Следовательно, существуют такие состояния электронов, при взаимодействии которых энергия системы может изменяться в пределах 0 < E < 0 .

Первое уравнение соответствует уменьшению энергии системы Е < 0 .

Второе уравнение соответствует увеличению энергии системы Е > 0 .

Условию уменьшения энергии системы удовлетворяет “y” - функция, определяющая состояние взаимодействующих электронов с противоположно направленными (антипараллельными) спинами. Эта “y” - функция называется симметричной “y” - функцией.

Отсюда следует вывод - химическая связь между атомами должна возникать только в том случае, если электроны, принадлежащие различным атомам, имеют противоположно направленные спины. Лишь при этом условии энергия молекулярной системы будет меньше энергии атомных систем, т.е. образуется устойчивая молекула. Следовательно, антипараллельность спинов электронов взаимодействующих атомов является необходимым условием образования ковалентной связи.


Рис. 8. Изменение потенциальной энергии в системе из двух атомов водорода в зависимости от расстояния между ядрами

При сближении двух атомов, если спины электронов параллельны, то суммарная их энергия увеличивается, между атомами возникает и возрастает сила отталкивания (рис.8).

При противоположно направленных спинах сближение атомов до некоторого расстояния r 0 сопровождается уменьшением энергии системы.

При r = r 0 система обладает наименьшей энергией, т.е. находится в наиболее устойчивом состоянии, характеризующимся образованием молекул водорода Н 2 . При дальнейшем сближении атомов энергия резко возрастает.

Возникновение молекулы Н 2 из атомов можно объяснить перекрыванием атомных электронных облаков с образованием молекулярного облака, которое окружает два положительно заряженных ядра.


Рис. 9. Перекрывание электронных облаков

при образовании молекулы водорода

В месте перекрывания электронных облаков (т.е. в пространстве между ядрами) электронная плотность связующего облака максимальна (рис.9). Иначе говоря, вероятность пребывания электронов в пространстве между ядрами больше, чем в других местах. Благодаря этому возникают силы притяжения между положительным зарядом ядра и отрицательными зарядами электронов и ядра сближаются – расстояние между ядрами водорода в молекуле Н 2 заметно меньше (0,74 Å) суммы радиусов двух свободных атомов водорода (1,06 Å)

Связь, образующаяся в результате обобщения электронных плотностей взаимодействующих атомов получила название ковалентной.

Согласно квантово - механическим представлениям взаимодействие атомов может привести к образованию молекулы только при условии, что спины электронов сближающихся атомов с противоположно направленными спинами. При сближении электронов с параллельными спинами действуют только силы отталкивания.

Н ­ + Н ¯ →Н ­¯ Н Н 2

+1/2 -1/2

Поскольку точное решение уравнения Шредингера для атомно-молекулярных систем невозможно, возникли различные приближенные методы расчета волновой функции, а следовательно распределения электронной плотности в молекуле. Наиболее широкое распространение получили два метода: метод валентных связей (ВС) и метод молекулярных орбиталей (МО) . В развитии первого метода особая заслуга принадлежит Гейтлеру и Лондону, Слетеру и Полингу. Развитие второго метода связано в основном с именами Малликена и Хунда.

Основные положения метода ВС . 1) Ковалентная химическая связь образуется двумя электронами с противоположно направленными спинами, при чем эта электронная пара принадлежит двум атомам.

2) При образовании ковалентной связи происходит перекрывание электронных облаков взаимодействующих атомов, в межъядерном пространстве увеличивается электронная плотность, что приводит к уменьшению энергии системы.

3) Ковалентная связь тем прочнее, чем в большей степени перекрываются взаимодействующие электронные облака. Поэтому ковалентная связь образуется в таком направлении, при котором это перекрытие максимально.

Этот метод дает обоснование обозначению с помощью черточки химической связи в структурных формулах соединений.

Таким образом, в представлении метода ВС химическая связь локализована между двумя атомами, т.е. она двухцентровая и двухэлектронная.