4 закона ньютона формулы. Первый закон ньютона. Дополнительные вопросы и задания

ОПРЕДЕЛЕНИЕ

Формулировка третьего закона Ньютона . Два тела действуют друг на друга с , равными по модулю и противоположными по направлению. Эти силы имеют одну и ту же физическую природу и направлены вдоль прямой, соединяющей их точки приложения.

Описание третьего закона Ньютона

Например, книга, лежащая на столе, действует на стол с силой, прямо пропорциональной своей и направленной вертикально вниз. Согласно третьему закону Ньютона стол в это же время действует на книгу с абсолютно такой же по величине силой, но направленной не вниз, а вверх.

Когда яблоко падает с дерева, это Земля действует на яблоко силой своего гравитационного притяжения (вследствие чего яблоко равноускоренно движется к поверхности Земли), но при этом и яблоко притягивает к себе Землю с такой же силой. А то, что нам кажется, что это именно яблоко падает на Землю, а не наоборот, является следствием . Масса яблока по сравнению с массой Земли мала до несопоставимости, поэтому именно яблока заметно для глаз наблюдателя. Масса же Земли, по сравнению с массой яблока, огромна, поэтому ее ускорение практически незаметно.

Аналогично, если мы пинаем мяч, то мяч в ответ пинает нас. Другое дело, что мяч имеет намного меньшую массу, чем тело человека, и потому его воздействие практически не чувствуется. Однако если пнуть тяжелый железный мяч, ответное воздействие хорошо ощущается. Фактически, мы каждый день по многу раз «пинаем» очень и очень тяжелый мяч — нашу планету. Мы толкаем ее каждым своим шагом, только при этом отлетает не она, а мы. А все потому, что планета в миллионы раз превосходит нас по массе.

Таким образом, третий закон Ньютона утверждает, что силы как меры взаимодействия всегда возникают парами. Эти силы не уравновешиваются, так как всегда приложены к разным телам.

Третий закон Ньютона выполняется только в и справедлив для сил любой природы.

Примеры решения задач

ПРИМЕР 1

Задание На полу лифта стоит груз массой 20 кг. Лифт движется с ускорением м/с , направленным вверх. Определить силу, с которой груз будет действовать на пол лифта.
Решение Сделаем рисунок

На груз в лифте действуют сила тяжести и сила реакции опоры .

По второму закону Ньютона:

Направим координатную ось , как показано на рисунке и запишем это векторное равенство в проекциях на координатную ось:

откуда сила реакции опоры:

Груз будет действовать на пол лифта с силой, равной его весу. По третьему закону Ньютона, эта сила равна по модулю силе, с которой пол лифта действует на груз, т.е. силе реакции опоры:

Ускорение свободного падения м/с

Подставив в формулу численные значения физических величин, вычислим:

Ответ Груз будет действовать на пол лифта с силой 236 Н.

ПРИМЕР 2

Задание Сравнить модули ускорений двух шаров одинакового радиуса во время взаимодействия, если первый шар сделан из стали, а второй – из свинца.
Решение Сделаем рисунок

Сила удара, с которой второй шар действует на первый:

а сила удара, с которой первый шар действует на второй:

По третьему закону Ньютона, эти силы противоположны по направлению и равны по модулю, поэтому можно записать.

Три закона сэра Исаака Ньютона описывают движение массивных тел и как они взаимодействуют.

В то время как законы Ньютона могут показаться очевидными для нас сегодня, более трех веков назад они считались революционными.

Содержание:

Ньютон, пожалуй, наиболее известен своей работой по изучению гравитации и движения планет. Призванный астрономом Эдмондом Галлеем после признания того, что за несколько лет до этого он потерял доказательство эллиптических орбит, Ньютон опубликовал свои законы в 1687 году в своей оригинальной работе «Philosophiæ Naturalis Principia Mathematica» (Математические принципы естественной философии), в которой он формализовал описание того, как массивные тела движутся под воздействием внешних сил.

Формулируя свои три закона, Ньютон упростил обращение к массивным телам, считая их математическими точками без размера или вращения. Это позволило ему игнорировать такие факторы, как трение, сопротивление воздуха, температура, свойства материала и т. Д., И сосредоточиться на явлениях, которые могут быть описаны исключительно по массе, длине и времени. Следовательно, три закона не могут быть использованы для описания точности поведения больших жестких или деформируемых объектов; однако во многих случаях они обеспечивают подходящие точные приближения.

Законы Ньютона


Законы Ньютона относятся к движению массивных тел в инерциальной системе отсчета, иногда называемой ньютоновской системой отсчета, хотя сам Ньютон никогда не описывал такую ​​систему отсчета. Инерциальную систему отсчета можно описать как трехмерную систему координат, которая либо стационарна, либо равномерно линейна, т. е. Не ускоряется и не вращается. Он обнаружил, что движение в такой инерциальной системе отсчета может быть описано тремя простыми законами.

Первый закон движения Ньютона

Первый Закон Движения гласит: Если на тело не действуют силы или их действие скомпенсировано, то данное тело находится в состоянии покоя или равномерного прямолинейного движения. Это просто означает, что вещи не могут начинать, останавливать или изменять направление самостоятельно. Требуется сила, действующая на них извне, чтобы вызвать такое изменение. Это свойство массивных тел сопротивляться изменениям в их движении иногда называют инерцией.

Второй закон движения Ньютона

Второй закон движения описывает, что происходит с массивным телом, когда на него воздействует внешняя сила. В нем говорится: Сила, действующая на объект, равна массе этого объекта своего ускорения. Это написано в математической форме как F = ma, где F — сила, m — масса, a — ускорение. Жирные буквы указывают, что сила и ускорение являются векторными величинами, что означает, что они имеют как величину, так и направление. Сила может быть одной силой, или это может быть векторная сумма более чем одной силы, которая является чистой силой после объединения всех сил.

Когда постоянная сила действует на массивное тело, она заставляет ее ускоряться, т. е. Изменять свою скорость с постоянной скоростью. В простейшем случае сила, приложенная к неподвижному объекту, заставляет его ускоряться в направлении силы. Однако, если объект уже находится в движении или если эта ситуация просматривается из движущейся системы отсчета, это тело может показаться ускоряющимся, замедляющим или изменяющим направление в зависимости от направления силы и направлений, в которых объект и система отсчета перемещается относительно друг друга.

Третий закон движения Ньютона

Третий закон движения гласит: Для каждого действия существует равное противодействие. Этот закон описывает то, что происходит с телом, когда оно оказывает силу на другое тело. Силы всегда встречаются парами, поэтому, когда одно тело толкает другого, второе тело отталкивается так же сильно. Например, когда вы нажимаете тележку, тележка отталкивается от вас; когда вы тянете за веревку, веревка откидывается на вас; когда сила тяжести тянет вас к земле, земля подталкивает вас и когда ракета воспламеняет свое топливо за ним, расширяющийся выхлопной газ толкается на ракете, заставляя его ускоряться.

Если один объект намного, гораздо более массивный, чем другой, особенно в случае привязки первого объекта к Земле, практически все ускорение передается второму объекту, и ускорение первого объекта можно безопасно игнорировать, Например, если вы бросили мяч на запад, вам не нужно было бы считать, что вы на самом деле заставили вращаться Землю быстрее, пока мяч находился в воздухе. Однако, если вы стоите на роликовых коньках, и вы бросили мяч для боулинга, вы начнете двигаться назад с заметной скоростью.

Три закона были проверены бесчисленными экспериментами за последние три столетия, и до сих пор они широко используются для описания видов предметов и скоростей, с которыми мы сталкиваемся в повседневной жизни. Они составляют основу того, что сейчас известно как классическая механика, а именно изучение массивных объектов, которые больше, чем очень мелкие масштабы, рассматриваемые квантовой механикой, и которые движутся медленнее, чем очень высокие скорости, релятивистские механики.

«Физика - 10 класс»

Какое явление называют инерцией?
Что называют системой отсчёта?

Закон инерции относится к самому простому случаю движения - движению тела, которое не взаимодействует с другими телами, т. е. движению свободного тела.

Ответить на вопрос, как же движутся свободные тела, не обращаясь к опыту, нельзя. Однако нельзя поставить ни одного опыта, который бы в чистом виде показал, как движется ни с чем не взаимодействующее тело, так как таких тел нет. Как же быть?

Имеется лишь один выход. Надо поместить тело в условия, при которых влияние внешних взаимодействий можно делать всё меньшим и меньшим, и наблюдать, к чему это ведёт. Можно, например, наблюдать за движением гладкого камня на горизонтальной поверхности, после того как ему сообщена некоторая скорость. (Притяжение камня к Земле компенсируется действием поверхности, на которую он опирается; на скорость его движения влияет только трение.) При этом легко обнаружить, что, чем более гладкой является поверхность, тем медленнее будет уменьшаться скорость камня. На гладком льду камень скользит весьма долго, не меняя заметно скорость. На основе подобных наблюдений можно сделать вывод: если бы поверхность была идеально гладкой, то при отсутствии сопротивления воздуха (в вакууме) камень совсем не менял бы своей скорости. Именно к такому выводу пришёл впервые Галилей.


Первый закон Ньютона:

Существуют системы отсчёта, называемые инерциальными, относительно которых тело движется прямолинейно и равномерно, если на него не действуют другие тела.


Первыи закон, или закон инерции, как его часто называют, фактически был открыт Галилеем, но строгую формулировку дал и включил его в число основных законов механики Исаак Ньютон.

Этот закон, с одной стороны, содержит определение инерциальной системы отсчёта. С другой стороны, он содержит утверждение (которое с той или иной степенью точности можно проверить на опыте) о том, что инерциальные системы отсчёта существуют в действительности.


Инерциальные и неинерциальные системы отсчёта


До сих пор систему отсчёта мы связывали с Землёй, т. е. рассматривали движение относительно Земли. В системе отсчёта, связанной с Землёй, ускорение тела определяется только действием на него других тел. Система отсчёта, связанная с Землёй, является инерциальной.

Из формулировки первого закона следует, что если есть одна инерциальная система отсчёта, то любая другая движущаяся относительно неё прямолинейно и равномерно также является инерциальной.

Однако помимо инерциальных систем отсчёта, есть и другие, в которых тело имеет ускорение даже в том случае, когда на него другие тела не действуют.

В качестве примера рассмотрим систему отсчёта, связанную с автобусом. При равномерном движении автобуса пассажир может не держаться за поручень, действие со стороны автобуса компенсируется взаимодействием с Землёй. При резком торможении автобуса стоящие в проходе пассажиры падают вперёд, получая ускорение относительно стенок автобуса (рис. 2.6). Однако это ускорение не вызвано какими-либо новыми воздействиями со стороны Земли или автобуса непосредственно на пассажиров. Относительно Земли пассажиры сохраняют свою постоянную скорость, но автобус начинает двигаться с ускорением, и пассажиры относительно него также движутся с ускорением. Ускорение появляется вследствие того, что движение их рассматривается относительно тела отсчёта (автобуса), движущегося с ускорением.


Рассмотрим маятник, находящийся на вращающемся диске (рис. 2.7). Нить маятника отклонена от вертикали, хотя сам он неподвижен относительно диска. Натяжение нити не может быть скомпенсировано силой притяжения к Земле. Следовательно, отклонение маятника нельзя объяснить только его взаимодействием с телами.

Рассмотрим ещё один маятник, находящийся в неподвижном вагоне. Нить маятника вертикальна (рис. 2.8, а). Шарик взаимодействует с нитью и Землёй, сила натяжения нити равна силе тяжести. С точки зрения пассажира в вагоне и человека, стоящего на перроне, шарик находится в равновесии вследствие того, что сумма сил, действующих на него, равна нулю.

Как только вагон начинает двигаться с ускорением, нить маятника отклоняется (шарик по инерции стремится сохранить состояние покоя). С точки зрения человека, стоящего на перроне, ускорение шарика должно быть равно ускорению вагона, так как нить не разрывается и шарик движется вместе с вагоном. Шарик по-прежнему взаимодействует с теми же телами, сумма сил этого взаимодействия должна быть отлична от нуля и определять ускорение шарика.

С точки зрения пассажира, находящегося в вагоне, шарик неподвижен, следовательно, сумма сил, действующих на шарик, должна быть равна нулю, однако на шарик действуют те же силы - натяжения нити и сила Рис. 2.8 тяжести. Значит, на шарик (рис. 2.8, б) должна действовать сила ин, которая определяется тем, что система отсчёта, связанная с вагоном, неинерциальная. Эту силу называют силой инерции (см. рис. 2.8, б).

В неинерциальных системах отсчёта основное положение механики о том, что ускорение тела вызывается действием на него других тел, не выполняется.

Системы отсчёта, в которых не выполняется первый закон Ньютона, называются неинерциальными .

В отсутствие внешних силовых воздействий тело будет продолжать равномерно двигаться по прямой.

Ускорение движущегося тела пропорционально сумме приложенных к нему сил и обратно пропорционально его массе.

Всякому действию сопоставлено равное по силе и обратное по направлению противодействие.

Законы Ньютона — в зависимости от того, под каким углом на них посмотреть, — представляют собой либо конец начала, либо начало конца классической механики. В любом случае это поворотный момент в истории физической науки — блестящая компиляция всех накопленных к тому историческому моменту знаний о движении физических тел в рамках физической теории, которую теперь принято именовать классической механикой. Можно сказать, что с законов движения Ньютона пошел отсчет истории современной физики и вообще естественных наук.

Однако Исаак Ньютон взял названные в его честь законы не из воздуха. Они, фактически, стали кульминацией долгого исторического процесса формулирования принципов классической механики. Мыслители и математики — упомянем лишь Галилея (см. Уравнения равноускоренного движения) — веками пытались вывести формулы для описания законов движения материальных тел — и постоянно спотыкались о то, что лично я сам для себя называю непроговоренными условностями, а именно — обе основополагающие идеи о том, на каких принципах зиждется материальный мир, которые настолько устойчиво вошли в сознание людей, что кажутся неоспоримыми. Например, древним философам даже в голову не приходило, что небесные тела могут двигаться по орбитам, отличающимся от круговых; в лучшем случае возникала идея, что планеты и звезды обращаются вокруг Земли по концентрическим (то есть вложенным друг в друга) сферическим орбитам. Почему? Да потому, что еще со времен античных мыслителей Древней Греции никому не приходило в голову, что планеты могут отклоняться от совершенства, воплощением которой и является строгая геометрическая окружность. Нужно было обладать гением Иоганна Кеплера, чтобы честно взглянуть на эту проблему под другим углом, проанализировать данные реальных наблюдений и вывести из них, что в действительности планеты обращаются вокруг Солнца по эллиптическим траекториям (см. Законы Кеплера).

Первый закон Ньютона

Учитывая столь серьезный, исторически сложившийся провал, первый закон Ньютона сформулирован безоговорочно революционным образом. Он утверждает, что если какую-либо материальную частицу или тело попросту не трогать, оно будет продолжать прямолинейно двигаться с неизменной скоростью само по себе. Если тело равномерно двигалось по прямой, оно так и будет двигаться по прямой с неизменной скоростью. Если тело покоилось, оно так и будет покоиться, пока к нему не приложат внешних сил. Чтобы просто сдвинуть физическое тело с места, к нему нужно обязательно приложить стороннюю силу. Возьмем самолет: он ни за что не стронется с места, пока не будут запущены двигатели. Казалось бы, наблюдение самоочевидное, однако, стоит нам отвлечься от прямолинейного движения, как оно перестает казаться таковым. При инерционном движении тела по замкнутой циклической траектории его анализ с позиции первого закона Ньютона только и позволяет точно определить его характеристики.

Представьте себе что-то типа легкоатлетического молота — ядро на конце струны, раскручиваемое вами вокруг вашей головы. Ядро в этом случае движется не по прямой, а по окружности — значит, согласно первому закону Ньютона, его что-то удерживает; это «что-то» — и есть центростремительная сила, которую вы прилагаете к ядру, раскручивая его. Реально вы и сами можете ее ощутить — рукоять легкоатлетического молота ощутимо давит вам на ладони. Если же вы разожмете руку и выпустите молот, он — в отсутствие внешних сил — незамедлительно отправится в путь по прямой. Точнее будет сказать, что так молот поведет себя в идеальных условиях (например, в открытом космосе), поскольку под воздействием силы гравитационного притяжения Земли он будет лететь строго по прямой лишь в тот момент, когда вы его отпустили, а в дальнейшем траектория полета будет всё больше отклоняться в направлении земной поверхности. Если же вы попробуете действительно выпустить молот, выяснится, что отпущенный с круговой орбиты молот отправится в путь строго по прямой, являющейся касательной (перпендикулярной к радиусу окружности, по которой его раскручивали) с линейной скоростью, равной скорости его обращения по «орбите».

Теперь заменим ядро легкоатлетического молота планетой, молотобойца — Солнцем, а струну — силой гравитационного притяжения: вот вам и ньютоновская модель Солнечной системы.

Такой анализ происходящего при обращении одного тела вокруг другого по круговой орбите на первый взгляд кажется чем-то само собой разумеющимся, но не стоит забывать, что он вобрал в себя целый ряд умозаключений лучших представителей научной мысли предшествующего поколения (достаточно вспомнить Галилео Галилея). Проблема тут в том, что при движении по стационарной круговой орбите небесное (и любое иное) тело выглядит весьма безмятежно и представляется пребывающим в состоянии устойчивого динамического и кинематического равновесия. Однако, если разобраться, сохраняется только модуль (абсолютная величина) линейной скорости такого тела, в то время как ее направление постоянно меняется под воздействием силы гравитационного притяжения. Это и значит, что небесное тело движется равноускоренно . Кстати, сам Ньютон называл ускорение «изменением движения».

Первый закон Ньютона играет и еще одну важную роль с точки зрения нашего естествоиспытательского отношения к природе материального мира. Он подсказывает нам, что любое изменение в характере движения тела свидетельствует о присутствии внешних сил, воздействующих на него. Условно говоря, если мы наблюдаем, как железные опилки, например, подпрыгивают и налипают на магнит, или, доставая из сушилки стиральной машины белье, выясняем, что вещи слиплись и присохли одна к другой, мы можем чувствовать себя спокойно и уверенно: эти эффекты стали следствием действия природных сил (в приведенных примерах это силы магнитного и электростатического притяжения соответственно).

Второй закон Ньютона

Если первый закон Ньютона помогает нам определить, находится ли тело под воздействием внешних сил, то второй закон описывает, что происходит с физическим телом под их воздействием. Чем больше сумма приложенных к телу внешних сил, гласит этот закон, тем большее ускорение приобретает тело. Это раз. Одновременно, чем массивнее тело, к которому приложена равная сумма внешних сил, тем меньшее ускорение оно приобретает. Это два. Интуитивно эти два факта представляются самоочевидными, а в математическом виде они записываются так:

F = ma

где F — сила, m — масса, а — ускорение. Это, наверное, самое полезное и самое широко используемое в прикладных целях из всех физических уравнений. Достаточно знать величину и направление всех сил, действующих в механической системе, и массу материальных тел, из которых она состоит, и можно с исчерпывающей точностью рассчитать ее поведение во времени.

Именно второй закон Ньютона придает всей классической механике ее особую прелесть — начинает казаться, будто весь физический мир устроен, как наиточнейший хронометр, и ничто в нем не ускользнет от взгляда пытливого наблюдателя. Назовите мне пространственные координаты и скорости всех материальных точек во Вселенной, словно говорит нам Ньютон, укажите мне направление и интенсивность всех действующих в ней сил, и я предскажу вам любое ее будущее состояние. И такой взгляд на природу вещей во Вселенной бытовал вплоть до появления квантовой механики .

Третий закон Ньютона

За этот закон, скорее всего, Ньютон и снискал себе почет и уважение со стороны не только естествоиспытателей, но и ученых-гуманитариев и попросту широких масс. Его любят цитировать (по делу и без дела), проводя самые широкие параллели с тем, что мы вынуждены наблюдать в нашей обыденной жизни, и притягивают чуть ли не за уши для обоснования самых спорных положений в ходе дискуссий по любым вопросам, начиная с межличностных и заканчивая международными отношениями и глобальной политикой. Ньютон, однако, вкладывал в свой названный впоследствии третьим закон совершенно конкретный физический смысл и едва ли замышлял его в ином качестве, нежели как точное средство описания природы силовых взаимодействий. Закон этот гласит, что если тело А воздействует с некоей силой на тело В, то тело В также воздействует на тело А с равной по величине и противоположной по направлению силой. Иными словами, стоя на полу, вы воздействуете на пол с силой, пропорциональной массе вашего тела. Согласно третьему закону Ньютона пол в это же время воздействует на вас с абсолютно такой же по величине силой, но направленной не вниз, а строго вверх. Этот закон экспериментально проверить нетрудно: вы постоянно чувствуете, как земля давит на ваши подошвы.

Тут важно понимать и помнить, что речь у Ньютона идет о двух силах совершенно разной природы, причем каждая сила воздействует на «свой» объект. Когда яблоко падает с дерева, это Земля воздействует на яблоко силой своего гравитационного притяжения (вследствие чего яблоко равноускоренно устремляется к поверхности Земли), но при этом и яблоко притягивает к себе Землю с равной силой. А то, что нам кажется, что это именно яблоко падает на Землю, а не наоборот, это уже следствие второго закона Ньютона. Масса яблока по сравнению с массой Земли низка до несопоставимости, поэтому именно его ускорение заметно для глаз наблюдателя. Масса же Земли, по сравнению с массой яблока, огромна, поэтому ее ускорение практически незаметно. (В случае падения яблока центр Земли смещается вверх на расстояние менее радиуса атомного ядра.)

По совокупности же три закона Ньютона дали физикам инструменты, необходимые для начала комплексного наблюдения всех явлений, происходящих в нашей Вселенной. И, невзирая на все колоссальные подвижки в науке, произошедшие со времен Ньютона, чтобы спроектировать новый автомобиль или отправить космический корабль на Юпитер, вы воспользуетесь все теми же тремя законами Ньютона.

См. также:

1609, 1619

Законы Кеплера

1659

Центробежная сила

1668

Закон сохранения линейного импульса

1736

Закон сохранения момента импульса

1738

Уравнение Бернулли

1835

Эффект Кориолиса

1851

Предельная скорость падения

1891

Принцип эквивалентности

1923

Принцип соответствия

Isaac Newton, 1642-1727

Англичанин, которого многие считают вообще величайшим ученым всех времен и народов. Родился в семье мелкопоместных дворян в окрестностях г. Вулсторпа (графство Линкольншир, Англия). Отца в живых не застал (тот умер за три месяца до рождения сына). Вступив в повторный брак, мать оставила двухлетнего Исаака на попечение его бабушки. Своеобразное эксцентричное поведение уже взрослого ученого многие исследователи его биографии как раз и приписывают тому факту, что до девятилетнего возраста, когда последовала смерть его отчима, мальчик был полностью лишен родительской заботы.

Какое-то время юный Исаак изучал премудрости сельского хозяйства в ремесленном училище. Как это часто случается с великими впоследствии людьми, о его чудачествах в ту раннюю пору его жизни до сих пор ходит масса легенд. Так, в частности, рассказывают, будто однажды его отправили на выпас сторожить скот, который благополучно разбрелся в неизвестном направлении, пока мальчик сидел под деревом и увлеченно читал заинтересовавшую его книгу. Так это или не так, но тягу подростка к знаниям вскоре приметили — и отправили обратно в гимназию г. Грантем, по окончании которой юноша успешно поступил в Тринити-колледж Кембриджского университета.

Ньютон быстро овладел учебной программой и перешел к изучению трудов ведущих ученых того времени, в частности последователей французского философа Рене Декарта (René Descartes, 1596-1650), который придерживался механистических взглядов на Вселенную. Весной 1665 года он получил ученую степень бакалавра — а дальше случились самые невероятные события в истории науки. В том же самом году в Англии разразилась последняя эпидемия бубонной чумы, всё чаще раздавался звон погребальных колоколов, и Кембриджский университет был закрыт. Ньютон почти на два года вернулся в Вулсторп, успев захватить с собой всего несколько книг и свой недюжинный интеллект в придачу.

Когда через два года Кембриджский университет вновь открылся, Ньютон уже (1) разработал дифференциальное исчисление — отдельный раздел математики, (2) изложил основы современной теории цвета, (3) вывел закон всемирного тяготения и (4) решил несколько математических задач, которые до него никто решить не смог. Как говорил сам Ньютон, «В те дни я был в расцвете своих изобретательских сил, и Математика и Философия с тех пор меня уже ни разу не захватывали так сильно, как тогда». (Я часто спрашиваю своих студентов, рассказывая им в очередной раз о достижениях Ньютона: «А что вы успели сделать за летние каникулы?»)

Вскоре после возвращения в Кембридж Ньютон был избран в ученый совет Тринити-колледжа, его статуя до сих пор украшает университетскую церковь. Он прочитал курс лекций по теории цвета, в которых показывал, что цветовые различия объясняются основными характеристиками световой волны (или, как теперь говорят, длины волны) и что свет имеет корпускулярную природу. Он также сконструировал зеркальный телескоп, и это изобретение привлекло к нему внимание Королевского общества. Многолетние исследования света и цветов были опубликованы в 1704 году в его фундаментальном труде «Оптика» (Optics ).

Отстаивание Ньютоном «неправильной» теории света (в то время господствовали волновые представления) привело к конфликту с Робертом Гуком (см. Закон Гука), главой Королевского общества. В ответ Ньютон высказал гипотезу, сочетавшую корпускулярные и волновые представления о свете. Гук обвинил Ньютона в плагиате и выступил с притязаниями на приоритет в этом открытии. Конфликт продолжался до самой смерти Гука в 1702 году и произвел на Ньютона такое гнетущее впечатление, что он на шесть отказался от участия в интеллектуальной жизни. Впрочем, некоторые психологи того времени объясняют это нервным расстройством, обострившимся после смерти его матери.

В 1679 году Ньютон вернулся к работе и снискал себе славу, исследуя траектории движения планет и их спутников. В результате этих исследований, также сопровождавшихся спорами с Гуком о приоритете, были сформулированы закон всемирного тяготения и законы механики Ньютона , как мы теперь их называем. Свои исследования Ньютон обобщил в книге «Математические начала натуральной философии» (Philosophiae naturalis principia mathematica ), представленной Королевскому обществу в 1686 году и опубликованной годом позже. Эта работа, положившая начало тогдашней научной революции, принесла Ньютону всемирное признание.

Его религиозные взгляды, его твердая приверженность протестантизму также привлекали к Ньютону внимание широких кругов английской интеллектуальной элиты, и особенно философа Джона Локка (John Locke, 1632-1704). Проводя всё больше времени в Лондоне, Ньютон втянулся в политическую жизнь столицы и в 1696 году был назначен смотрителем Монетного двора. Хотя эта должность традиционно считалась синекурой, Ньютон подошел к своей работе со всей серьезностью, рассматривая перечеканку английской монеты как действенную меру борьбы с фальшивомонетчиками. Как раз в это время Ньютон был вовлечен в очередной спор о приоритете, на сей раз с Готфридом Лейбницем (Gottfreid Leibniz, 1646-1716), по поводу открытия дифференциального исчисления. В конце жизни Ньютон выпустил новые издания своих основных трудов, а также работал на посту президента Королевского общества, занимая при этом пожизненную должность директора Монетного двора.

Кинематика – изучает движение тел, не рассматривая причины, которые это движение обуславливает.

Мат.точка – не имеет размеров, но в мат.точке сосредоточенна масса всего тела.

Поступательное – движение при котором прямая связанная с телом остаётся || самой себе.

Кинетические ур-я движения мат.точки:

Траектория – линия описываемая мат.точкой в пространстве.

Перемещение – приращение радиуса-вектора точки за рассматриваемый промежуток времени.

Скорость – Быстрота движения мат.точки.

Вектором средней скорости<> называется отношение приращения радиуса-вектора точки к промежутку времени.

Мгновенная скорость – величина, равная первой производной радиуса-вектора движущейся точки по времени.

Модуль мгновенной скорости равен первой производной пути по времени.

Компоненты равны производным от координат по времени.

Равномерное – движение при котором за равные промежутки времени тело проходит одинаковые пути.

Неравномерное – движение при котором скорость меняется как по модулю так и по направлению.

    Ускорение и его составляющие.

Ускорение – физ.величина, определяющая быстроту изменения скорости, как по модулю, так и по направлению.

Средним ускорением неравномерного движения в интервале времени от t до t+t называется векторная величина равная отношению изменения скорости к интервалу времениt: .Мгновенным ускорением мат.точки в момент времени t будет предел среднего ускорения. ..

определяет по модулю.

определяет по направлению.т.е. равна первой производной по времени от модуля скорости, определяя тем самым быстроту изменения скорости по модулю.

Нормальная составляющая ускорения направлена по нормали к траектории к центру её кривизны (поэтому её также называют центростремительным ускорением).

Полное ускорение тела есть геометрическая сумма тангенциальной и нормальной составляющих.

Если а н =?,а т =?

  1. 1,2,3 Законы Ньютона.

В основе Динамики мат.точки лежат три закона Ньютона.

Первый закон Ньютона – всякая материальная точка (тело) сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не заставит её изменить это состояние.

Инертность – стремление тела сохранять состояние покоя или равномерного прямолинейного движения.

Законы Ньютона выполняются только в инерциальной системе отсчёта .

Инерциальная система отсчёта – система, которая либо покоится, либо движется равномерно и прямолинейно относительно какой то другой инерциальной системы.

Масса тела – физ.величина, являющаяся одной из основных характеристик материи, определяющая её инерционные (инертная масса) и гравитационные (гравитационная масса) св-ва.

Сила – векторная величина, являющаяся мерой механического воздействия на тело со стороны других тел или полей, в результате которого тело приобретает ускорение или изменяет свою форму и размеры.

Второй закон Ньютона – ускорение, приобретаемое материальной точкой (телом), пропорционально вызывающей его силе, совпадает с нею по направлению и обратно пропорционально массе материальной точки.

Импульс (кол-во движения) – векторная величина, численно равная произведению массы материальной точки на её скорость и имеющая направление скорости.

Более общая формулировка 2-го закона Н.(уравнение движения мт): скорость изменения импульса материальной точки равна действующей на неё силе.

Следствие из 2зН: принцип независимости действия сил: если на мт действует одновременно несколько сил, то каждая из этих сил сообщает мт ускорение согласно 2зН, как будто других сил не было.

Третий закон Ньютона. Всякое действие мт (тел) друг на друга, носит характер взаимодействия; силы, с которыми действуют друг на друга мт, всегда равны по модулю, противоположно направлены и действуют вдоль прямой, соединяющей эти точки.

    Импульс тела, сила. Закон сохранения импульса.

Внутренние силы – силы взаимодействия между мт механической системы.

Внешние силы – силы, с которыми на мт системы действуют внешние тела.

В механической системе тел, по 3-му закону Ньютона, силы, действующие между этими телами, будут равны и противоположно направлены, т.е. геометрическая сумма внутренних сил равна 0.

Запишем 2зН, для каждого из n тел механической системы(мс):

…………………

Сложим эти ур-я:

Т.к. геометрическая сумма внутренних сил мс по 3зН равна 0, то:

где - импульс системы.

В случае отсутствия внешних сил(замкнутая система):

, т.е.

Это и есть закон сохранения импульса : импульс замкнутой системы сохраняется, т.е. не изменяется с течением времени.

    Центр масс, движение центра масс.

Центр масс (центр инерции) системы мт называется воображаемая точка С , положение которой характеризует распределение массы этой системы.

Радиус-вектор этой точки равен:

Скорость центра масс (цм):

; , т.е. импульс системы равен произведению массы системы на скорость её центра масс.

Т.к. то:, т.е.:

Закон движения центра масс: центр масс системы движется как мт, в которой сосредоточена масса всей системы и на которую действует сила, равная геометрической сумме всех внешних сил, действующих на систему.

    Кинематика вращательного движения материальной точки.

Угловая скорость – векторная величина, равная первой производной угла поворота тела по времени.

Вектор направлен вдоль оси вращения по правилу правого винта.

Линейная скорость точки:

В векторном виде: , при этом модуль равен:.

Если =const, то вращение равномерное.

Период вращения (Т) – время, за которое точка совершает один полный оборот. ().

Частота вращения ( n ) – число полных оборотов, совершаемых телом при равномерном его движении по окружности, в единицу времени. ;.

Угловое ускорение – векторная величина, равная первой производной угловой скорости по времени: . При ускоренном, при замедленном.

Тангенциальная составляющая ускорения:

Нормальная составляющая: .

Формулы связи линейных и угловых величин:

При :

    Момент силы.

Момент силы F относительно неподвижной точки О называется физическая величина, определяемая векторным произведением радиуса-вектора r , проведённого из точки О в точку А приложения силы, на силу F.

Здесь - псевдовектор, его направление совпадает с направлением поступательного движения правого винта при его вращении отк.

Модуль момента силы равен .

Момент силы относительно неподвижной оси z – скалярная величина , равная проекции на эту ось векторамомента силы, определённого относительно произвольной точки О данной осиz. Значение момента не зависит от выбора положения точки О на данной оси.

    Момент инерции твёрдого тела. Теорема Штейнера.

Момент инерции системы (тела) относительно оси вращения называется физическая величина, равная сумме произведений масс n мт системы на квадрат их расстояний до рассматриваемой оси.

При непрерывном распределении масс.

Теорема Штейнера: момент инерции тела J относительно любой оси вращения равен моменту его инерции J C относительно параллельной оси, проходящеё через центр масс С тела, сложенному с произведением массы m тела на квадрат расстояния а между осями:

    Основное уравнение динамики вращательного движения.

Пусть сила F приложена к точке В. Находящейся от оси вращения на расстоянии r, -угол между направлением силы и радиус-векторомr. При повороте тела на бесконечно малый угол , точка приложения В проходит путь, и работа равна произведению проекции силы на направление смещения на величину смещения:

Учитывая, что , запишем:

Где -момент силы, относительно оси.

Работа при вращении тела равна произведению момента действующей силы на угол поворота.

Работа при вращении тела идёт на увеличение его кинетической энергии:

Но ,, поэтому

Учитывая, что получим:

Этот и есть относительно неподвижной оси.

Если ось вращения совпадает с главной осью инерции, проходящей через центр масс, то: .

    Момент импульса. Закон сохранения момента импульса.

Момент импульса (количество движения) мт А относительно неподвижной точки О – физическая величина, определяемая векторным произведением:

где r-радиус-вектор, проведённый из точки О в точку А; - импульс мт.-псевдовектор, его направление совпадает с направлением поступательного движения правого винта при его вращении отк.

Модуль вектора момента импульса:

Момент импульса относительно неподвижной оси z называется скалярная величина L z , равная проекции на эту ось вектора момента импульса, определённого относительно произвольной точки О данной оси.

Т.к. , то момент импульса отдельной частицы:

Момент импульса твёрдого тела относительно оси есть сумма моментов импульса отдельных частиц, а т.к. , то:

Т.о. момент импульса твёрдого тела относительно оси равен произведению момента инерции тела относительно той же оси на угловую скорость.

Продифференцируем последнее уравнение: , т.е.:

это и есть уравнение динамики вращательного движения твёрдого тела относительно неподвижной оси: Производная момента импульса твёрдого тела относительно оси равна моменту сил относительно той же оси.

Можно показать, что имеет место векторное равенство:

В замкнутой системе момент внешних сил и, откуда:L=const, это выражение и есть закон сохранения момента импульса: момент импульса замкнутой системы сохраняется, т.е. не изменяется с течением времени.

    Работа силы. Мощность.

Энергия – универсальная мера различных форм движения и взаимодействия.

Работа силы – величина, характеризующая процесс обмена энергией между взаимодействующими телами в механике.

Если тело движется прямолинейно и на него действует постоянная сила , которая составляет некоторый уголс направлением перемещения, торабота этой силы равна произведению проекции силы F s на направление перемещения, умноженной на перемещение точки приложения силы:

Элементарная работа силы на перемещенииназывается скалярная величина, равная:, где,,.

Работа силы на участке траектории от 1 до 2 равна алгебраической сумме элементарных работ на отдельных бесконечно малых участках пути:

Если на графике изображена зависимость F s от S, то работа определяется на графике площадью закрашенной фигуры.

При , то А>0

При , то А<0,

При , то А=0.

Мощность – скорость совершения работы.

Т.е. мощность равна скалярному произведению вектору силы на вектор скорости, с которой движется точка приложения силы.

    Кинетическая и потенциальная энергия поступательного и вращательного движения.

Кинетическая энергия механической системы – энергия механического движения этой системы. dA=dT. По 2зН , помножим наи получим:;

Отсюда:.

Кинетическая энергия системы – есть функция состояния её движения, она всегда , и зависит от выбора системы отсчёта.

Потенциальная энергия – механическая энергия системы тел, определяемая их взаимным расположением и характером сил взаимодействия между ними.

Если силовое поле характеризуется тем, что работа совершаемая действующими силами при перемещении тела из одного положения в другое, не зависит от того, по какой траектории, по которой это перемещение произошло, а зависит только от начального и конечного положений, то такое поле называется потенциальным, а силы, действующие в нём – консервативными, если же работа зависит от траектории то такая сила – диссипативная .

Т.к. работа совершается за счёт убыли потенциальной энергии, то: ;;, где С – постоянная интегрирования, т.е. энергия определяется с точностью до некоторой произвольной постоянной.

Если силы консервативны, то:

- Градиент скаляра П. (также обозначается ).

Т.к. начало отсчёта выбирается произвольно, то потенциальная энергия может иметь отрицательное значение. (при П=-mgh’).

Найдём потенциальную энергию пружины.

Сила упругости: , по 3зН:F x =-F x упр =kx;

dA=F x dx=kxdx;.

Потенциальная энергия системы является функцией состояния системы, она зависит только от конфигурации системы и от её положения по отношению к внешним телам.

Кинетическая энергия вращения

    Механическая энергия. Закон сохранения механической энергии.

Полная механическая энергия системы – энергия механического движения и взаимодействия: Е=Т+П, т.е. равна сумме кинетической и потенциальной энергий.

Пусть F 1 ’…F n ’ – равнодействующие внутренних консервативных сил. F 1 …F n - равнодействующие внешних консервативных сил. f 1 …f n . Запишем уравнения 2зН для этих точек:

Умножим каждое ур-е на , учтя, что.

Сложим ур-я:

Первый член левой части:

Где dT есть приращение кинетической энергии системы.

Второй член равен элементарной работе внутренних и внешних сил, взятой со знаком минус, т.е. равен элементарному приращению потенциальной энергииdП системы.

Правая часть равенства задаёт работу вешних неконсервативных сил, действующих на систему. Т.о.:

Если внешние неконсервативные силы отсутствуют, то:

d(Т+П)=0;Т+П=Е=const

Т.е. полная механическая энергия системы сохраняется постоянной. Закон сохранения механической энергии : в системе тел, между которыми действуют только консервативные силы, полная механическая энергия сохраняется, т.е. не изменяется со временем.

    Абсолютно упругий удар.

Удар (соударение)

Коэффициент восстановления

абсолютно неупругими , если =1 тоабсолютно упругими.

Линия удара

Центральный удар

Абсолютно упругий удар – столкновение 2-х тел, в результате которого в обоих взаимодействующих не остаётся ни каких деформаций и вся кинетическая энергия, которой обладали тела до удара, после удара снова превращается в кинетическую энергию.

Для абсолютно упругого удара выполняются закон сохранения импульса и закон сохранения энергии.

Законы сохранения:

m 1 v 1 +m 2 v 2 =m 1 v’ 1 +m 2 v’ 2

после преобразований:

откуда:v 1 +v 1 ’=v 2 +v 2 ’

решая последнее ур-е и предпедпоследнее найдём:

    Абсолютно неупругий удар.

Удар (соударение) – столкновение 2-х или более тел, при котором взаимодействие длится очень короткое время. При ударе внешними силами можно пренебречь.

Коэффициент восстановления – отношение нормальной составляющей относительной скорости тел после и до удара.

Если для сталкивающих тел =0, то такие тела называютсяабсолютно неупругими , если =1 тоабсолютно упругими.

Линия удара – прямая проходящая через точку соприкосновения тел и нормальная к поверхности их соприкосновения.

Центральный удар – такой удар, при котором тела до удара движутся вдоль прямой, проходящей через их центр масс.

Абсолютно неупругий удар – столкновении 2-х тел, в результате которого тела объединяются, двигаясь дальше, как единое целое.

Закон сохранения импульса:

Если шары двигались навстречу друг другу, то при абсолютно неупругом ударе шары движутся в сторону большего импульса.

    Поле тяготения, напряжённость, потенциал.

Закон всемирного тяготения: между любыми двумя мт действует сила взаимного притяжения, прямо пропорциональная произведению масс этих точек и обратно пропорциональная квадрату расстояния между ними:

G – Гравитационная постоянная (G=6,67*10 -11 Hm 2 /(кг) 2)

Гравитационное взаимодействие между двумя телами осуществляется с помощью поля тяготения , или гравитационного поля. Это поле порождается телами и является формой существования материи. Основное св-во поля в том, что на всякое тело внесённое в это поле действует сила тяготения:

Вектор не завит от массы и называется напряжённостью поля тяготения.

Напряжённость поля тяготения определяется силой действующей со стороны поля на мт единичной массы, и совпадает по направлению с действующей силой, напряжённость есть силовая хар-ка поля тяготения.

Поле тяготения однородное если напряжённость во всех точках его одинакова, и центральным , если во всех точках поля векторы напряжённости направлены вдоль прямых, которые пересекаются в одной точке.

Гравитационное поле тяготения – носитель энергии.

На расстоянии R на тело действует сила:

при перемещении этого тела на расстояние dR затрачивается работа:

Знак минус появляется, т.к. сила и перемещение в данном случае противоположны по направлению.

Затраченная работа в пол тяготения не зависит от траектории перемещения, т.е. илы тяготения консервативны, а поле тяготения является потенциальным.

Если то П 2 =0, тогда запишем:,

Потенциал поля тяготения – скалярная величина, определяемая потенциальной энергией тела единичной массы в данной точке поля или работой по перемещению единичной массы из данной точки поля в бесконечность. Т.о.:

Эквипотенциальные – такие поверхности, для которых потенциал постоянен.

Взаимосвязь между потенциалом и напряженностью.

Знак мину указывает на то, что вектор напряжённости направлен в сторону убывания потенциала.

Если тело находится на высоте h, то

    Неинерциальная система отсчёта. Силы инерции при ускоренном поступательном движении системы отсчёта.

Неинерциальная – система отсчёта, движущаяся относительно инерциальной системы отсчёта с ускорением.

Законы Н можно применять в неинерциальной системе отсчёта, если учесть силы инерции. Силы инерции при этом должны быть такими, чтобы вместе с силами, обусловленными воздействием тел друг на друга, они сообщали телу ускорение, каким оно обладает в неинерциальных системах отсчёта, т.е.:

Силы инерции при ускоренном поступательном движении системы отсчёта.

Т.е. угол отклонения нити от вертикали равен:

Относительно системы отсчёта, связанной с тележкой шарик покоится, что возможно, если сила F уравновешивается равной и противоположно направленной ей силой F ин, т.е.:

    Силы инерции, действующие на тело, покоящееся во вращающейся системе отсчёта.

Пусть диск равномерно вращается с угловой скоростью вокруг вертикальной оси, проходящей через его центр. На диске на разных расстояниях от оси вращения установлены маятники (на нитях подвешены шарики). При вращении маятников вместе с диском шарики отклоняются от вертикали на некоторый угол.

В инерциальной системе отсчёта, связанной с помещением, на шарик действует сила, равная , и направлена перпендикулярно оси вращения диска. Она является равнодействующей силы тяжестии силы натяжения нити:

Когда движение шарика установится, то:

т.е. углы отклонения нитей маятников будут тем больше, чем больше расстояние R от шарика до оси вращения диска и чем больше угловая скорость вращения .

Относительно системы отсчёта, связанной с вращающимся диском, шарик покоится, что возможно, если сила уравновешивается равной и противоположно направленной ей силой.

Сила , называемаяцентробежной силой инерции , направлена по горизонтали от оси вращения диска и равна:.

    Гидростатическое давление, закон Архимеда, закон неразрывности струи.

Гидроаэромеханика – раздел механики, изучающий равновесие и движение жидкостей и газов, их взаимодействие между собой и обтекаемыми ими твёрдыми телами.

Несжимаемая жидкость – жидкость, плотность которой всюду одинакова и не изменяется со временем.

Давление – физическая величина, определяемая нормальной силой, действующей о стороны жидкости на единицу площади:

Закон Паскаля – давление в любом месте покоящейся жидкости одинаково по всем направлениям, причём давление одинаково передаётся по всему объёму, занятому покоящейся жидкости.

Если жидкость не сжимаема, то при поперечном сечении S столба жидкости, его высоте h и плотности вес:

А давление на нижнее основание:,т.е. давление изменяется линейно с высотой. Давлениеназываетсягидростатическим давлением .

Из этого следует, что давление на нижние слои жидкости будет больше, чем на верхние, значит на тело, погружённое в жидкость действует выталкивающая сила, определяемая законом Архимеда: на тело погружённое в жидкость (газ), действует со стороны этой жидкости направленная вверх выталкивающая сила, равная весу вытесненной телом жидкости:,

Течение – движение жидкости.Поток – совокупность частиц движущейся жидкости.Линии тока – графическое изображение движения жидкости.

Течение жидкости установившееся (стационарно) , если форма расположения линий тока, а так же значения скоростей в каждой её точке со временем не изменяются.

За 1с через сечение S 1 пройдёт объём жидкости равный , а черезS 2 - , здесь предполагается, что скорость жидкости в сечении постоянна. Если жидкость не сжимаема, то через оба сечения пройдёт равный объём:

Это и есть уравнение неразрывности струи для несжимаемой жидкости.

    Закон Бернулли.

Жидкость идеальна, движение стационарно.

За малый промежуток времени жидкость перемещается от сеченийS 1 и S 2 к сечениям S’ 1 и S’ 2 .

По закону сохранения энергии изменение полной энергии идеальной несжимаемой жидкости равно работе внешних сил по перемещению массы жидкости:,

где Е 1 и Е 2 – полные энергии жидкости массой m в местах сечений S 1 и S 2 соответственно.

С другой стороны А – это работа, совершаемая при перемещении всей жидкости, заключённой между сечениями S 1 и S 2 , за рассматриваемый промежуток времени . Для переноса массыm от S 1 до S’ 1 жидкость должна переместится на расстояние и отS 2 до S’ 2 на расстояние .,гдеF 1 =p 1 S 1 и F 2 =-p 2 S 2 .