В бескислородной стадии энергетического обмена расщепляются молекулы. В бескислородной стадии энергетического обмена расщепляются молекулы Кислородное окисление, или дыхание

Энергетический обмен (катаболизм, диссимиляция) — совокупность реакций расщепления органических веществ, сопровождающихся выделением энергии. Энергия, освобождающаяся при распаде органических веществ, не сразу используется клеткой, а запасается в форме АТФ и других высокоэнергетических соединений. АТФ — универсальный источник энергообеспечения клетки. Синтез АТФ происходит в клетках всех организмов в процессе фосфорилирования — присоединения неорганического фосфата к АДФ.

У аэробных организмов (живущих в кислородной среде) выделяют три этапа энергетического обмена: подготовительный, бескислородное окисление и кислородное окисление; у анаэробных организмов (живущих в бескислородной среде) и аэробных при недостатке кислорода — два этапа: подготовительный, бескислородное окисление.

Подготовительный этап

Заключается в ферментативном расщеплении сложных органических веществ до простых: белковые молекулы — до аминокислот, жиры — до глицерина и карбоновых кислот, углеводы — до глюкозы, нуклеиновые кислоты — до нуклеотидов. Распад высокомолекулярных органических соединений осуществляется или ферментами желудочно-кишечного тракта или ферментами лизосом. Вся высвобождающаяся при этом энергия рассеивается в виде тепла. Образовавшиеся небольшие органические молекулы могут быть использованы в качестве «строительного материала» или могут подвергаться дальнейшему расщеплению.

Бескислородное окисление, или гликолиз

Этот этап заключается в дальнейшем расщеплении органических веществ, образовавшихся во время подготовительного этапа, происходит в цитоплазме клетки и в присутствии кислорода не нуждается. Главным источником энергии в клетке является глюкоза. Процесс бескислородного неполного расщепления глюкозы — гликолиз .

Потеря электронов называется окислением, приобретение — восстановлением, при этом донор электронов окисляется, акцептор восстанавливается.

Следует отметить, что биологическое окисление в клетках может происходить как с участием кислорода:

А + О 2 → АО 2 ,

так и без его участия, за счет переноса атомов водорода от одного вещества к другому. Например, вещество «А» окисляется за счет вещества «В»:

АН 2 + В → А + ВН 2

или за счет переноса электронов, например, двухвалентное железо окисляется до трехвалентного:

Fe 2+ → Fe 3+ + e — .

Гликолиз — сложный многоступенчатый процесс, включающий в себя десять реакций. Во время этого процесса происходит дегидрирование глюкозы, акцептором водорода служит кофермент НАД + (никотинамидадениндинуклеотид). Глюкоза в результате цепочки ферментативных реакций превращается в две молекулы пировиноградной кислоты (ПВК), при этом суммарно образуются 2 молекулы АТФ и восстановленная форма переносчика водорода НАД·Н 2:

С 6 Н 12 О 6 + 2АДФ + 2Н 3 РО 4 + 2НАД + → 2С 3 Н 4 О 3 + 2АТФ + 2Н 2 О + 2НАД·Н 2 .

Дальнейшая судьба ПВК зависит от присутствия кислорода в клетке. Если кислорода нет, у дрожжей и растений происходит спиртовое брожение, при котором сначала происходит образование уксусного альдегида, а затем этилового спирта:

  1. С 3 Н 4 О 3 → СО 2 + СН 3 СОН,
  2. СН 3 СОН + НАД·Н 2 → С 2 Н 5 ОН + НАД + .

У животных и некоторых бактерий при недостатке кислорода происходит молочнокислое брожение с образованием молочной кислоты:

С 3 Н 4 О 3 + НАД·Н 2 → С 3 Н 6 О 3 + НАД + .

В результате гликолиза одной молекулы глюкозы высвобождается 200 кДж, из которых 120 кДж рассеивается в виде тепла, а 80% запасается в связях АТФ.

Кислородное окисление, или дыхание

Заключается в полном расщеплении пировиноградной кислоты, происходит в митохондриях и при обязательном присутствии кислорода.

Пировиноградная кислота транспортируется в митохондрии (строение и функции митохондрий — лекция №7). Здесь происходит дегидрирование (отщепление водорода) и декарбоксилирование (отщепление углекислого газа) ПВК с образованием двухуглеродной ацетильной группы, которая вступает в цикл реакций, получивших название реакций цикла Кребса. Идет дальнейшее окисление, связанное с дегидрированием и декарбоксилированием. В результате на каждую разрушенную молекулу ПВК из митохондрии удаляется три молекулы СО 2 ; образуется пять пар атомов водорода, связанных с переносчиками (4НАД·Н 2 , ФАД·Н 2), а также одна молекула АТФ.

Суммарная реакция гликолиза и разрушения ПВК в митохондриях до водорода и углекислого газа выглядит следующим образом:

С 6 Н 12 О 6 + 6Н 2 О → 6СО 2 + 4АТФ + 12Н 2 .

Две молекулы АТФ образуются в результате гликолиза, две — в цикле Кребса; две пары атомов водорода (2НАДЧН2) образовались в результате гликолиза, десять пар — в цикле Кребса.

Последним этапом является окисление пар атомов водорода с участием кислорода до воды с одновременным фосфорилированием АДФ до АТФ. Водород передается трем большим ферментным комплексам (флавопротеины, коферменты Q, цитохромы) дыхательной цепи, расположенным во внутренней мембране митохондрий. У водорода отбираются электроны, которые в матриксе митохондрий в конечном итоге соединяются с кислородом:

О 2 + e — → О 2 — .

Протоны закачиваются в межмембранное пространство митохондрий, в «протонный резервуар». Внутренняя мембрана непроницаема для ионов водорода, с одной стороны она заряжается отрицательно (за счет О 2 —), с другой — положительно (за счет Н +). Когда разность потенциалов на внутренней мембране достигает 200 мВ, протоны проходят через канал фермента АТФ-синтетазы, образуется АТФ, а цитохромоксидаза катализирует восстановление кислорода до воды. Так в результате окисления двенадцати пар атомов водорода образуется 34 молекулы АТФ.

Энергетический обмен - это по-этапный распад сложных органических соединений, протекающий с выделением энергии, которая запасается в макроэргических связях молекул АТФ и используется потом в процессе жизнедеятельности клетки, в том числе на биосинтез, т.е. пластический обмен.

В аэробных организмах выделяют:

  1. Подготовительный - расщепление биополимеров до мономеров.
  2. Бескислородный - гликолиз - расщепление глюкозы до пировиноградной кислоты.
  3. Кислородный - расщепление пировиноградной кислоты до углекислого газа и воды.

Подготовительный этап

На подготовительном этапе энергетического обмена происходит расщепление поступивших с пищей органических соединений на более простые, обычно мономеры. Так углеводы расщепляются до сахаров, в том числе глюкозы; белки - до аминокислот; жиры - до глицерина и жирных кислот.

Хотя при этом выделяется энергия, она не запасается в АТФ и, следовательно, не может быть использована впоследствии. Энергия рассеивается в виде тепла.

Расщепление полимеров у многоклеточных сложноорганизованных животных протекает в пищеварительном тракте под действием выделяющихся сюда железами ферментов. Затем образовавшиеся мономеры всасываются в кровь в основном через кишечник. Уже кровью питательные вещества разносятся по клеткам.

При этом не все вещества разлагаются до мономеров в пищеварительной системе. Расщепление многих происходит непосредственно в клетках, в их лизосомах. У одноклеточных организмов поглощенные вещества попадают в пищеварительные вакуоли, где и перевариваются.

Образовавшиеся мономеры могут использоваться как для энергетического, так и пластического обмена. В первом случае они расщепляются, во-втором – из них синтезируются компоненты самих клеток.

Бескислородный этап энергетического обмена

Бескислородный этап протекает в цитоплазме клеток и в случае аэробных организмов включает только гликолиз - ферментативное многоступенчатое окисление глюкозы и ее расщепление до пировиноградной кислоты , которую также называют пируватом.

Молекула глюкозы включает шесть атомов углерода. При гликолизе она расщепляется до двух молекул пирувата, который включает три атома углерода. При этом отщепляется часть атомов водорода, которые передаются на кофермент НАД, который, в свою очередь, потом будет участвовать в кислородном этапе.

Часть выделяющейся при гликолизе энергии запасается в молекулах АТФ. На одну молекулу глюкозы синтезируется всего две молекулы АТФ.

Энергия, оставшаяся в пирувате, запасенная в НАД, у аэробов далее будет извлечена на следующем этапе энергетического обмена.

В анаэробных условиях, когда кислородный этап клеточного дыхания отсутствует, пируват «обезвреживается» в молочную кислоту или подвергается брожению. При этом энергия не запасается. Таким образом, здесь полезный энергетический выход обеспечивается только малоэффектвным гликолизом.

Кислородный этап

Кислородный этап протекает в митохондриях . В нем выделяют два подэтапа: цикл Кребса и окислительное фосфорилирование. Поступающий в клетки кислород используется только на втором. В цикле Кребса происходит образование и выделение углекислого газа.

Цикл Кребса протекает в матриксе митохондрий, осуществляется множеством ферментов. В него поступает не сама молекула пировиноградной кислоты (или жирной кислоты, аминокислоты), а отделившаяся от нее с помощью кофермента-А ацетильная группа, включающая два атома углерода бывшего пирувата. За многоступенчатый цикл Кребса происходит расщепление ацетильной группы до двух молекул CO 2 и атомов водорода. Водород соединяется с НАД и ФАД. Также происходит синтез молекулы ГДФ, приводящей к синтезу потом АТФ.

На одну молекулу глюкозы, из которой образуется два пирувата, приходится два цикла Кребса. Таким образом, образуется две молекулы АТФ. Если бы энергетический обмен заканчивался здесь, то суммарно расщепление молекулы глюкозы давало бы 4 молекулы АТФ (две от гликолиза).

Окислительное фосфорилирование протекает на кристах – выростах внутренней мембраны митохондрий. Его обеспечивает конвейер ферментов и коферментов, образующий так называемую дыхательную цепь, заканчивающуюся ферментом АТФ-синтетазой.

По дыхательной цепи происходит передача водорода и электронов, поступивших в нее от коферментов НАД и ФАД. Передача осуществляется таким образом, что протоны водорода накапливаются с внешней стороны внутренней мембраны митохондрий, а последние ферменты в цепи передают только электроны.

В конечном итоге электроны передаются молекулам кислорода, находящимся с внутренней стороны мембраны, в результате чего они заряжаются отрицательно. Возникает критический уровень градиента электрического потенциала, приводящий к перемещению протонов через каналы АТФ-синтетазы. Энергия движения протонов водорода используется для синтеза молекул АТФ, а сами протоны соединяются с анионами кислорода с образованием молекул воды.

Энергетический выход функционирования дыхательной цепи, выраженный в молекулах АТФ, велик и суммарно составляет от 32 до 34 молекул АТФ на одну исходную молекулу глюкозы.

Энергетический обмен

Энергетический обмен (диссимиляция) — совокупность ферментативных реакций в живом организме, направленных на расщепление сложных органических веществ (белков, нуклеиновых кислот, жиров, углеводов), поступающих с пищей и запасённых в самом организме (крахмал, гликоген и пр.) до простых веществ с высвобождением энергии.

Условно энергетический обмен можно разделить на несколько этапов.

Первый этап — подготовительный , включающий в себя расщепление сложных веществ на простые молекулы.

Следующий этап — бескислородный , протекающий в цитоплазме клеток без участия кислорода.

Наиболее важным является кислородный этап . Он протекает в митохондриях и требует присутствия кислорода.

Подготовительный этап энергетического обмена заключается в расщеплении крупных молекул органических веществ на более мелкие.

Их распад происходит в различных частях желудочно-кишечного тракта. Внутри клеток органические вещества расщепляются при участии ферментов лизосом.

Выделяющаяся в результате подготовительного этапа энергия рассеивается в виде тепла, а образовавшиеся малые молекулы используются в качестве строительного материала.

Бескислородный этап энергетического обмена характеризуется ферментативным распадом органических веществ в анаэробных условиях.

Он идёт непосредственно в цитоплазме клетки.

Примерами бескислородных процессов служат гликолиз и брожение .

В результате бескислородного этапа энергетического обмена организмы получают энергию, необходимую для жизнедеятельности; 40% энергии расходуется на синтез АТФ, остальное расходуется в виде теплоты.

Кислородное расщепление (кислородный этап) — этап энергетического обмена, во время которого происходит полное окисление продуктов бескислородного этапа до углекислого газа и воды с выделением энергии и её аккумулированием в молекулах АТФ.

Так, при окислении двух молекул молочной кислоты образуется 36 молекул АТФ. Часть молекул расходуется на сами процессы окисления, а 21 молекула АТФ передается в цитоплазму для обеспечения работы других клеточных структур.

2C 3 H 6 O 3 + 6O 2 + 36H 3 PO 4 + 36АДФ => 6CO 2 + 6H 2 O + 36АТФ

Кислородное расщепление идёт на внутренней мембране митохондрий и в матриксе под действием многочисленных ферментов крист.

Молекула АТФ (аденозинтрифосфорная кислота ) является универсальным переносчиком и основным аккумулятором химической энергии в клетке. Она представляет собой нуклеотид, состоящий из аденина, рибозы и трёх остатков фосфорной кислоты. В организме АТФ синтезируется из АДФ и неорганического фосфата:

АДФ + H 3 PO 4 + энергия → АТФ + H 2 O.

Малые размеры молекул позволяют им легко диффундировать в различные участки клетки, где необходимо обеспечить энергией процессы жизнедеятельности.

В организме АТФ является одним из самых часто обновляемых веществ — так у человека продолжительность жизни одной молекулы АТФ менее 1 мин. В течение суток одна молекула АТФ проходит в среднем 2 000 — 3 000 циклов ресинтеза (около 40 кг АТФ в день). Таким образом, запаса АТФ в организме практически не создаётся, и для нормальной жизнедеятельности необходимо постоянно синтезировать новые молекулы.

1. В подготовительной стадии энергетического обмена происходит

а) расщепление биополимеров до мономеров
б) синтез белков из аминокислот
в) синтез полисахаридов из глюкозы и фруктозы
г) расщепление глюкозы до молочной кислоты
2. Расщепление полисахаридов до моносахаридов в клетке происходит при участии ферментов
а) лизосом
б) рибосом
в) комплекса Гольджи
г) эндоплазматической сети
3. Благодаря энергетическому обмену клетка обеспечивается
а) белками
б) углеводами
в) липидами
г) молекулами АТФ
4. Реакции расщепления органических веществ в клетке происходит с
а) освобождением энергии
б) использованием солнечной энергии
в) образованием биополимеров
г) восстановлением углекислого газа до углеводов
5. Расщепление липидов до глицерина и жирных кислот происходит в
а) подготовительную стадию энергетического обмена
б) процессе гликолиза
в) кислородную стадию энергетического обмена
г) ходе пластического обмена

Это зачетная работа! Очень много вопросов... Помогите, прошу! Сюда кинула только половину. Ответьте, пожалуйста! Прокариоты, в отличии от эукариот, имеют

Выберите один ответ: a. митохондрии и пластиды b. плазматическую мембрану c. ядерное вещество без оболочки d. множество крупных лизосом В поступлении и передвижении веществ в клетке участвуют Выберите один или несколько ответов: a. эндоплазматическая сеть b. рибосомы c. жидкая часть цитоплазмы d. плазматическая мембрана e. центриоли клеточного центра Рибосомы представляют собой Выберите один ответ: a. два мембранных цилиндра b. округлые мембранные тельца c. комплекс микротрубочек d. две немембранные субъединицы Растительная клетка в отличии от животной имеет Выберите один ответ: a. митохондрии b. пластиды c. плазматическую мембрану d. аппарат Гольджи Крупные молекулы биополимеров поступают в клетку через мембрану Выберите один ответ: a. путем пиноцитоза b. за счет осмоса c. путем фагоцитоза d. путем диффузии При нарушении третичной и четвертичной структуры молекул белка в клетке перестают функционировать Выберите один ответ: a. ферменты b. углеводы c. АТФ d. липиды Текст вопроса

В чем проявляется взаимосвязь пластического и энергетического обмена

Выберите один ответ: a. энергетический обмен поставляет кислород для пластического b. пластический обмен поставляет органические вещества для энергетического c. пластический обмен поставляет молекулы АТФ для энергетического d. пластический обмен поставляет минеральные вещества для энергетического

Сколько молекул АТФ запасается в процессе гликолиза?

Выберите один ответ: a. 38 b. 36 c. 4 d. 2

В реакциях темновой фазы фотосинтеза участвуют

Выберите один ответ: a. молекулярный кислород, хлорофилл и ДНК b. углекислый газ, АТФ и НАДФН2 c. вода, водород и тРНК d. оксид углерода, атомарный кислород и НАДФ+

Сходство хемосинтеза и фотосинтеза состоит в том, что в обоих процессах

Выберите один ответ: a. на образование органических веществ используется солнечная энергия b. на образование органических веществ используется энергия, освобождаемая при окислении неорганических веществ c. органические вещества образуются из неорганических d. образуются одни и те же продукты обмена

Информация о последовательности расположения аминокислот в молекуле белка переписывается в ядре с молекулы ДНК на молекулу

Выберите один ответ: a. рРНК b. иРНК c. АТФ d. тРНК Какая последовательность правильно отражает путь реализации генетической информации Выберите один ответ: a. признак --> белок --> иРНК --> ген --> ДНК b. ген --> ДНК --> признак --> белок c. ген --> иРНК --> белок --> признак d. иРНК --> ген --> белок --> признак

Всю совокупность химических реакций в клетке называют

Выберите один ответ: a. брожением b. метаболизмом c. хемосинтезом d. фотосинтезом

Биологический смысл гетеротрофного питания заключается в

Выберите один ответ: a. потреблении неорганических соединений b. синтезе АДФ и АТФ c. получении строительных материалов и энергии для клеток d. синтезе органических соединений из неорганических

Все живые организмы в процессе жизнедеятельности используют энергию, которая запасается в органических веществах, созданных из неорганических

Выберите один ответ: a. растениями b. животными c. грибами d. вирусами

В процессе пластического обмена

Выберите один ответ: a. более сложные углеводы синтезируются из менее сложных b. жиры превращаются в глицерин и жирные кислоты c. белки окисляются с образованием углекислого газа, воды, азотсодержащих веществ d. происходит освобождение энергии и синтез АТФ

Принцип комплементарности лежит в основе взаимодействия

Выберите один ответ: a. нуклеотидов и образования двуцепочечной молекулы ДНК b. аминокислот и образования первичной структуры белка c. глюкозы и образования молекулы полисахарида клетчатки d. глицерина и жирных кислот и образования молекулы жира

Значение энергетического обмена в клеточном метаболизме состоит в том, что он обеспечивает реакции синтеза

Выберите один ответ: a. нуклеиновыми кислотами b. витаминами c. ферментами d. молекулами АТФ

Ферментативное расщепление глюкозы без участия кислорода - это

Выберите один ответ: a. пластический обмен b. гликолиз c. подготовительный этап обмена d. биологическое окисление

Расщепление липидов до глицерина и жирных кислот происходит в

Выберите один ответ: a. кислородную стадию энергетического обмена b. процессе гликолиза c. ходе пластического обмена d. подготовительную стадию энергетического обмена

Пожалуйста помогите ответить на тесты

1. Поверхностный слой клеток животных, состоящих из углеводов, объединенных с белками:
а) Подмембранный комплекс
б) Плазмалемма
в) Гликокаликс
г) Пелликула
2.Совокупность характеристик Хромосомного комплекса:
а) Генотип
б) Кариотип
в) Фенотип
г) Хроматин
3. Локализация синтеза рибосом в клетке:
а) Цитоплазма
б) эндоплазматическая сеть
в) Ядро
г) аппарат Гольджи
5. Профаза 1 мейоза отличается от прафазы митоза тем, что в ней:
а) появляется метафазная пластинка
б) происходит спирализация ДНК
в) идёт процесс кроссинговера
г) формируется веретено деления
6.Количество молекул АТФ, синтезирующееся на бескислородном этапе энергетического обмена на одну молекулу глюкозы:
а) 2
б) 6
в) 8
г) 38
7. Локализация синтеза белков в клетке
а) цитоплазма
б) мембраны гладкой эндоплазматической сети
в) мембраны шероховатой эндоплазматической сети
г) аппарат Гольджи
8. Для протекания процесса фотосинтеза необходимо наличие:
а) света
б) молекул углекислого газа
в) молекул кислорода
г) молекул хлорофилла
9. Фотосинтезирующие организмы:
а)живтоные
б)цианобактерии
в) растения
г) сине-зеленые водоросли
10. Количество мембран, из которых состоит оболочка митохондрии:
а) две - наружная и внутренняя
б) одна - наружная
в) три - наружная, средняя и внутренняя
г) одна - внутренняяА)образование АТФ;
Б)образование первичного сахара и выделение кислорода;
В)превращение лейкопластов в хролопласты:
Г)расщепление молекул воды под действием солнечного света.
20)Расположение хромосом на экваторе клетки происходит в следующей фазе митоза:
А)профаза
Б)анафаза
В)метафаза
Г)телофаза
21)При фотосинтезе кислород образуется из молекулы:
А)глюкозы
Б)света
В)воды
Г)углекислого газа
22)Разделение центромер хромосом и расхождение хроматид к полюсам клетки происходит во время следующей стадии митоза:
А)анафаза
Б)профаза
В)телофаза
Г)метафаза