Каково быть искусственным интеллектом. Что такое искусственный интеллект (ИИ): определение понятия простыми словами. В бизнесе и торговле

В этом году компания «Яндекс» запустила голосового помощника «Алиса». Новый сервис позволяет пользователю прослушивать новости и погоду, получать ответы на вопросы и просто общаться с ботом. «Алиса» иногда дерзит , порой кажется почти разумной и по-человечески саркастичной , но часто не может разобраться, о чём её спрашивают, и садится в лужу.

Всё это породило не только волну шуток, но и новый виток дискуссий о развитии искусственного интеллекта. Новости о том, чего добились умные алгоритмы, сегодня приходят чуть ли не каждый день, а машинное обучение называют одним из самых перспективных направлений, которому можно себя посвятить.

Чтобы прояснить главные вопросы об искусственном интеллекте, мы побеседовали с Сергеем Марковым, специалистом по искусственному интеллекту и методам машинного обучения, автором одной из самых сильных отечественных шахматных программ SmarThink и создателем проекта «XXII век» .

Сергей Марков,

специалист по искусственному интеллекту

Развенчивая мифы об ИИ

так что же такое «искусственный интеллект»?

Понятию «искусственный интеллект» в какой-то мере не повезло. Возникшее изначально в научной среде, оно со временем проникло в фантастическую литературу, а через неё - в поп-культуру, где претерпело целый ряд изменений, обросло множеством интерпретаций и в конце-концов было совершенно мистифицировано.

Именно поэтому мы часто слышим от неспециалистов примерно такие заявления: «ИИ не существует», «ИИ невозможно создать». Непонимание сути исследований, ведущихся в сфере ИИ, легко приводит людей и к другим крайностям - например, современным системам ИИ приписывают наличие сознания, свободной воли и секретных мотивов.

Давайте попробуем отделить мух от котлет.

В науке искусственным интеллектом называют системы, предназначенные для решения интеллектуальных задач.

В свою очередь, интеллектуальная задача - это задача, которую люди решают при помощи собственного интеллекта. Заметим, что в данном случае специалисты сознательно уходят от определения понятия «интеллект», поскольку до появления систем ИИ единственным примером интеллекта был интеллект человеческий, и определить понятие интеллекта на основе единственного примера - то же самое, что пытаться провести прямую через единственную точку. Таких прямых может оказаться сколько угодно много, а значит, спор о понятии интеллекта можно было бы вести столетиями.

«сильный» и «слабый» искусственный интеллект

Системы ИИ делятся на две большие группы.

Прикладной искусственный интеллект (также используют термин «слабый ИИ» или «узкий ИИ», в английской традиции - weak/applied/narrow AI) - это ИИ, предназначенный для решения какой-либо одной интеллектуальной задачи или их небольшого множества. К этому классу относятся системы для игры в шахматы, го, распознавания образов, речи, принятия решения о выдаче или невыдаче банковского кредита и так далее.

В противоположность прикладному ИИ вводят понятие универсального искусственного интеллекта (также «сильный ИИ», по-английски - strong AI/Artificial General Intelligence) - то есть, гипотетического (пока что) ИИ, способного решать любые интеллектуальные задачи.

Часто люди, не зная терминологии, отождествляют ИИ с сильным ИИ, из-за этого и возникают суждения в духе «ИИ не существует».

Сильного ИИ действительно пока не существует. Практически все успехи, которые мы наблюдаем в последнее десятилетие в области ИИ, - это успехи прикладных систем. Эти успехи нельзя недооценивать, так как прикладные системы в ряде случаев способны решать интеллектуальные задачи лучше, чем это делает универсальный человеческий интеллект.

Я думаю, вы заметили, что понятие ИИ - довольно широкое. Скажем, устный счёт - это тоже интеллектуальная задача, и это значит, что любая счётная машина будет считаться системой ИИ. А как насчёт счётов? Абака ? Антикитерского механизма ? Действительно, всё это формально хотя и примитивные, но системы ИИ. Однако обычно, называя какую-то систему системой ИИ, мы тем самым подчёркиваем сложность решаемой этой системой задачи.

Совершенно очевидно, что разделение интеллектуальных задач на простые и сложные - весьма искусственное, и наши представления о сложности тех или иных задач постепенно меняются. Механическая счётная машина была чудом техники в XVII веке, но сегодня людей, с детства сталкивающихся с куда более сложными механизмами, она уже не способна впечатлить. Когда игра машин в го или автомобильные автопилоты уже перестанут удивлять публику, наверняка найдутся люди, которые будут морщиться из-за того, что кто-то будет относить такие системы к ИИ.

«Роботы-отличники»: о способностях ИИ к обучению

Ещё одно забавное заблуждение - всенепременное наличие у систем ИИ способности к самообучению. С одной стороны, это совсем не обязательное свойство систем ИИ: есть множество удивительных систем, не способных самообучаться, но, тем не менее, решающих многие задачи лучше человеческого мозга. С другой стороны, некоторые люди просто не знают того, что самообучение - свойство, которые многие системы ИИ обрели ещё более полусотни лет назад.

Когда в 1999 году я писал свою первую шахматную программу, самообучение уже было совершенно общим местом в этой области - программы умели запоминать опасные позиции, подстраивать под себя дебютные варианты, регулировать стиль игры, подстраиваясь под соперника. Конечно, тем программам было ещё очень далеко до Alpha Zero . Тем не менее, даже системы, обучающиеся поведению на основе взаимодействия с другими системами в ходе экспериментов по так называемому «обучению с подкреплением», уже существовали. Однако по необъяснимой причине некоторые люди до сих пор думают, что способность к самообучению - это прерогатива человеческого интеллекта.

Машинное обучение, целая научная дисциплина, занимается процессами обучения машин решению тех или иных задач.

Существует два больших полюса машинного обучения - обучение с учителем и обучение без учителя.

При обучении с учителем у машины уже есть некоторое количество условно правильных решений для некоторого набора случаев. Задача обучения в таком случае заключается в том, чтобы научить машину на основе имеющихся примеров принимать правильные решения в других, неизвестных ситуациях.

Другая крайность - обучение без учителя . То есть машину ставят в ситуацию, когда правильные решения неизвестны, имеются только данные в сыром, неразмеченном виде. Оказывается, и в таких случаях можно добиться некоторого успеха. Например, можно научить машину выявлению семантических отношений между словами языка на основе анализа очень большого набора текстов.

Одна из разновидностей обучения с учителем - это обучение с подкреплением (reinforcement learning). Идея заключается в том, что система ИИ выступает в роли агента, помещённого в некоторую модельную среду, в которой она может взаимодействовать с другими агентами, например, с собственными копиями, и получать от среды некоторую обратную связь через функцию вознаграждения. Например, шахматная программа, которая играет сама с собой, постепенно подстраивая свои параметры и тем самым постепенно усиливая собственную игру.

Обучение с подкреплением - довольно широкая область, в ней применяют множество интересных методов, начиная от эволюционных алгоритмов и заканчивая байесовской оптимизацией . Последние достижения в области ИИ для игр как раз связаны с усилением ИИ в ходе обучения с подкреплением.

Риски развития технологий: стоит ли бояться «Судного дня»?

Я не отношусь к числу ИИ-алармистов, и в этом смысле я отнюдь не одинок. Например, создатель стэнфордского курса по машинному обучению Эндрю Ын сравнивает проблему опасности ИИ с проблемой перенаселения Марса.

Действительно, в будущем вполне вероятно, что люди колонизируют Марс. Также вероятно, что рано или поздно на Марсе может возникнуть проблема перенаселения, но не совсем понятно, почему мы должны заниматься этой проблемой уже сейчас? Согласны с Ыном и Ян ЛеКун - создатель свёрточных нейронный сетей, и его шеф Марк Цукерберг, и Йошуа Беньо - человек, во многом благодаря исследованиям которого современные нейронные сети способны решать сложные задачи в области обработки текстов.

Чтобы изложить мои взгляды на эту проблему, потребуется, вероятно, несколько часов, поэтому остановлюсь только на основных тезисах.

1. НЕЛЬЗЯ ОГРАНИЧИВАТЬ РАЗВИТИЕ ИИ

Алармисты рассматривают риски, связанные с потенциальным разрушительным воздействием ИИ, при этом игнорируя риски, связанные с попыткой ограничить или даже остановить прогресс в этой области. Технологическое могущество человечества возрастает чрезвычайно быстрыми темпами, что приводит к эффекту, который я называю «удешевлением апокалипсиса».

150 лет назад при всём желании человечество не могло нанести невосполнимого урона ни биосфере, ни себе как виду. Для реализации катастрофического сценария 50 лет назад необходимо было бы сконцентрировать всю технологическую мощь ядерных держав. Завтра для воплощения в жизнь глобальной техногенной катастрофы может хватить и небольшой горстки фанатиков.

Наша технологическая мощь растёт куда быстрее, чем способность человеческого интеллекта эту мощь контролировать.

Если на смену человеческому интеллекту с его предрассудками, агрессией, заблуждениями и ограниченностью не придёт система, способная принимать более взвешенные решения (будь то ИИ или, что я считаю более вероятным, технологически улучшенный и объединённый с машинами в единую систему человеческий интеллект), нас может ждать глобальная катастрофа.

2. создание сверхинтеллекта принципиально невозможно

Существует идея о том, что ИИ будущего всенепременно будет сверхинтеллектом, превосходящим людей даже сильнее, чем люди превосходят муравьёв. Боюсь в данном случае разочаровать и технологических оптимистов - наша Вселенная содержит целый ряд фундаментальных физических ограничений, которые, по всей видимости, сделают создание сверхинтеллекта невозможным.

Например, скорость передачи сигнала ограничена скоростью света, а на планковских масштабах появляется неопределённость Гейзенберга. Отсюда вытекает первый фундаментальный предел - предел Бремерманна, вводящий ограничения на максимальную скорость вычислений для автономной системы заданной массы m.

Другой предел связан с принципом Ландауэра , в соответствии с которым существует минимальное количество теплоты, выделяемое при обработке 1 бита информации. Слишком быстрые вычисления вызовут недопустимый разогрев и разрушение системы. В действительности, современные процессоры от лимита Ландауэра отделяет менее чем тысячекратное отставание. Казалось бы, 1000 - это довольно много, однако ещё одна проблема заключается в том, что многие интеллектуальные задачи относятся к классу сложности EXPTIME. Это означает, что время, необходимое для их решения, является экспоненциальной функцией от размерности задачи. Ускорение системы в несколько раз даёт лишь константный прирост «интеллекта».

В общем, есть очень серьёзные основания полагать, что сверхинтеллектуального сильного ИИ не получится, хотя, конечно, уровень человеческого интеллекта вполне может быть превзойдён. Насколько это опасно? Скорее всего, не очень.

Представьте себе, что вы внезапно начали думать в 100 раз быстрее остальных людей. Значит ли это, что вы легко будете способны уговорить любого прохожего отдать вам свой кошелёк?

3. мы беспокоимся совсем не о том

К сожалению, в результате спекуляций алармистов на страхах публики, воспитанной на «Терминаторе» и знаменитом HAL 9000 Кларка и Кубрика, происходит смещение акцентов в сфере безопасности ИИ в сторону анализа маловероятных, но эффектных сценариев. При этом реальные опасности ускользают из виду.

Любая достаточно сложная технология, претендующая на то, чтобы занять важное место в нашем технологическом ландшафте, безусловно приносит с собой специфические риски. Множество жизней было погублено паровыми машинами - на производстве, на транспорте и так далее - прежде чем были выработаны эффективные правила и меры по обеспечению безопасности.

Если говорить о прогрессе в области прикладного ИИ, можно обратить внимание на связанную с ним проблему так называемого «Цифрового тайного суда» . Всё больше и больше прикладных систем ИИ принимает решения по вопросам, затрагивающим жизнь и здоровье людей. Сюда относятся и медицинские диагностические системы, и, например, системы, принимающие в банках решения о выдаче или невыдаче кредита клиенту.

В то же время структура используемых моделей, наборы используемых факторов и другие детали процедуры принятия решения скрыты коммерческой тайной от человека, чья судьба находится на кону.

Используемые модели могут основывать свои решения на мнениях учителей-экспертов, допускавших систематические ошибки или имевших те или иные предрассудки - расовые, гендерные.

ИИ, обученный на решениях таких экспертов, будет добросовестно воспроизводить эти предрассудки в своих решениях. В конце концов эти модели могут содержать в себе специфические дефекты.

Этими проблемами сейчас мало кто занимается, поскольку, конечно, SkyNet, развязывающий ядерную войну, это, безусловно, куда более зрелищно.

Нейросети как «горячий тренд»

С одной стороны, нейронные сети - это одна из самых старинных моделей, применяющихся для создания систем ИИ. Появившиеся изначально в результате применения бионического подхода , они довольно быстро убежали от своих биологических прототипов. Исключением тут являются только импульсные нейронные сети (впрочем, пока не нашедшие широкого применения в индустрии).

Прогресс последних десятилетий связан с развитием технологий глубокого обучения - подхода, при котором нейронные сети собирают из большого количество слоёв, каждый из которых построен на основе определённых регулярных паттернов.

Помимо создания новых нейросетевых моделей важный прогресс был также достигнут в области технологий обучения. Сегодня нейронные сети учат уже не при помощи центральных процессоров компьютеров, а с использованием специализированных процессоров, способных быстро производить матричные и тензорные вычисления. Наиболее распространённый на сегодняшний день вид таких устройств - видеокарты. Впрочем, активно ведётся разработка ещё более специализированных устройств для обучения нейросетей.

В целом, безусловно, нейронные сети на сегодняшний день, - это одна из основных технологий в области машинного обучения, которой мы обязаны решению многих задач, ранее решавшихся неудовлетворительно. С другой стороны, конечно, нужно понимать, что нейронные сети не являются панацеей. Для некоторых задач они - далеко не самый эффективный инструмент.

Так насколько умны нынешние роботы на самом деле?

Всё познаётся в сравнении. На фоне технологий 2000-го года нынешние достижения выглядят настоящим чудом. Всегда найдутся люди, любящие побрюзжать. 5 лет назад они вовсю трындели о том, что машины никогда не выиграют у людей в го (ну или, по крайней мере, выиграют очень нескоро). Говорили о том, что машина никогда не сможет нарисовать с нуля картину, в то время как сегодня люди практически неспособны отличать картины, созданные машинами, от картин неизвестных им художников. В конце прошлого года машины научились синтезировать речь, практически неотличимую от человеческой, а в последние годы от музыки, создаваемой машинами, не вянут уши.

Посмотрим, что будет завтра. Я смотрю на эти области применения ИИ с большим оптимизмом.

Перспективные направления: где начать погружение в сферу ИИ?

Я бы посоветовал постараться на хорошем уровне освоить один из популярных нейросетевых фреймворков и один из популярных в области машинного обучения языков программирования (наиболее популярна на сегодняшний день связка TensorFlow + Python).

Овладев этими инструментами и имея в идеале крепкую базу в области математической статистики и теории вероятностей, следует направить свои усилия в ту сферу, которая будет наиболее интересна лично вам.

Интерес к предмету работы - один из самых важных ваших помощников.

Потребность в специалистах по машинному обучению существует в самых разных областях - в медицине, в банковском деле, в науке, на производстве, поэтому сегодня хорошему специалисту предоставлен как никогда широкий выбор. Потенциальные преимущества любой из этих отраслей мне представляются несущественными по сравнению с тем, что работа будет приносить вам удовольствие.

Для книги «Архитекторы интеллекта: вся правда об искусственном интеллекте от его создателей» писатель и футурист Мартин Форд взял интервью у 23 самых выдающихся исследователей в области ИИ, включая CEO DeepMind Демиса Хассабиса, руководителя Google AI Джеффа Дина и ИИ-директора в Стэнфорде Фей-Фей Ли. Каждого из них Форд спросил, в каком году вероятность создания сильного ИИ составит не менее 50%.

Из 23 человек ответили 18, и только двое из них согласились на публикацию предсказаний под своим именем. Интересно, что они дали самые экстремальные ответы: Рэй Курцвейл, футуролог и директор по инженерным разработкам в Google, назвал 2029 год, а Родни Брукс, робототехник и соучредитель iRobot, - 2200. Остальные догадки расположились между этими двумя полюсами, среднее значение - 2099 год, то есть через 80 лет.

Форд говорит, что эксперты стали называть более отдаленные даты - в опросах прошлых лет они заявляли, что сильный ИИ может появиться примерно через 30 лет.

«Вероятно, существует некоторая корреляция между тем, насколько вы дерзки или оптимистичны, и тем, насколько вы молоды», - добавил писатель, отметив, что нескольким его собеседникам было за 70, и они пережили взлеты и падения ИИ. «После работы над этой проблемой в течение десятилетий, возможно, вы становитесь немного более пессимистичными», - считает он.

Форд также указал, что эксперты высказывают разные мнения о способе появления ИИ общего назначения - одни считают, что для этого достаточно имеющихся технологий, другие же категорически с этим не согласны.

Некоторые исследователи утверждают, что большинство инструментов уже готовы, а теперь требуются просто время и усилия. Их оппоненты убеждены, что для создания сильного ИИ все еще не достает многих фундаментальных открытий. По словам Форда, ученые, чья работа касалась глубокого обучения, склонны думать, что в будущем прогресс будет достигнут с использованием нейронных сетей - рабочей лошадки современного ИИ. Те, кто имеет опыт работы в других областях ИИ, считают, что для построения его сильной версии потребуются дополнительные методы наподобие символической логики.

«Некоторые люди из лагеря глубокого обучения очень пренебрежительно относятся к идее напрямую разработать что-то вроде здравого смысла в ИИ. Они думают, что это глупо. Один из них сказал, что это все равно что пытаться засунуть кусочки информации прямо в мозг», - говорит Форд.

Все опрошенные отметили ограничения существующих ИИ-систем и ключевые навыки, которые им еще предстоит освоить, в том числе трансферное обучение, когда знания в одной области применяются к другой, и обучение без наставника, когда системы узнают новое без участия человека. Подавляющее большинство современных методов машинного обучения полагаются на данные, размеченные людьми, что является серьезным препятствием для их развития.

Интервьюируемые также подчеркнули абсолютную невозможность делать прогнозы в области, подобной ИИ, где ключевые открытия начинают работать в полную мощь только спустя десятилетия после их обнаружения.

Стюарт Рассел, профессор Калифорнийского университета в Беркли, автор одного из основополагающих учебников по ИИ, указал, что технологии для создания сильного ИИ, «не имеют ничего общего с большими данными или более мощными машинами».

«Я всегда рассказываю историю из ядерной физики. Точка зрения, высказанная Эрнестом Резерфордом 11 сентября 1933 года, заключалась в том, что энергию из атомов извлечь нельзя. Однако на следующее утро Лео Силард прочитал речь Резерфорда, разозлился и изобрел ядерную цепную реакцию, опосредованную нейтронами! Таким образом, предсказание Резерфорда было опровергнуто примерно через 16 часов. Точно так же совершенно бессмысленно делать точные прогнозы в области ИИ», - сказал Рассел.

Исследователи также не сошлись в оценке потенциальной опасности ИИ. Ник Бостром, оксфордский философ и автор книги «Искусственный интеллект: Этапы. Угрозы. Стратегии» и фаворит Илона Маска, утверждает, что ИИ представляет собой большую угрозу для человечества, чем изменение климата. Он и его сторонники считают, что одной из самых больших проблем в этой области является обучение ИИ человеческим ценностям.

«Дело не в том, что ИИ возненавидит нас за порабощение или что внезапно возникнет искра сознания, и он взбунтуется. Скорее, он будет очень старательно преследовать цель, которая отличается от нашего истинного намерения», - сказал Бостром.

Большинство респондентов заявили, что вопрос об угрозе ИИ крайне абстрактен по сравнению с такими проблемами, как экономический спад и использование передовых технологий в войне. Барбара Грос, профессор в области ИИ в Гарварде, внесшая весомый вклад в область языковой обработки, сказала, что проблемы этики сильного ИИ в основном «отвлекают».

«У нас есть ряд этических проблем, связанных с существующим ИИ. Думаю, что не стоит отвлекаться от них из-за пугающих футуристических сценариев», - считает она.

По словам Форда, подобные споры можно назвать самым важным итогом его опроса: они показывают, что в такой сложной области, как искусственный интеллект, нет простых ответов. Даже самые именитые ученые не могут прийти к единому мнению в фундаментальных проблемах этой области знания.

«Лос-Анджелес, ноябрь 2019». Если с датой прибытия в 2015 год Марти Макфлая из «Назад в будущее» по какой-то причине случилось много накладок и фальстартов, то фэндом «Бегущего по лезвию» оказался более дисциплинированным: в начале ноября 2019-го как по команде ленты соцсетей погрузились в ностальгию по теперь уже ретровзгляду на наше настоящее, каким оно могло бы быть. Билборды «Атари» и неуклюжие интерфейсы, дождливая Калифорния, возвращение причесок и платьев из сороковых — ну и, конечно, андроиды, почти неотличимые от людей. Несмотря на многие упущения в предсказании будущего, «Бегущий по лезвию» очень верно отразил тот постоянно нарастающий за последние лет сорок дискомфорт, что характеризует отношения человека и вычислительных машин (что во многом и определяет неубывающую актуальность фильма). Откуда мы на самом деле знаем, что мы умнее компьютера? Как жить, когда тебя целиком заменяет технология? Что если нас всех можно свести к алгоритмам?

Вопросы, еще не так давно лежавшие в умозрительной плоскости, становятся максимально приземленными: недавно стало известно, что компания Тимура Бекмамбетова Screenlife Technologies находится в активной фазе разработки русскоязычного синтезатора голоса Vera Voice (подобные технологии, позволяющие нейросети «говорить» голосом знаменитостей на английском, уже существуют и используются).

Без работы рискуют остаться не только актеры: нейросети уже умеют писать простые тексты, генерировать узоры и мелодии, вести вполне осмысленные диалоги, коммуницировать с другими нейросетями. В ближайшие годы многим из нас придется всерьез задумываться над сменой профессии и над тем, насколько большую часть своей жизни мы готовы отдать на откуп искусственному интеллекту. К счастью, к осмыслению этих вопросов нас очень хорошо подготовила популярная наука, популярная философия и в целом поп-культура XIX, XX и XXI веков: страх перед машиной-творцом — это, кажется, естественное состояние человека и многие технологические достижения в равной степени подпитывали его и помогали его преодолеть.

1811

Растущая механизация производства тканей и текстильных изделий приводит к падению дохода английских ткачей и вязальщиков (на их невзгоды накладывается общее падение благосостояния в стране в связи с наполеоновскими войнами). В Ноттингемшире, где сосредоточено много подобных производств, заговорщики по ночам встречаются на торфяниках и планируют разрушительные атаки на станки; затем эта практика распространяется по всей Англии. Своим духовным предводителем они считают некого Неда Ладда — героя, впоследствии оказавшегося мифическим, но давшего движению луддитов название. В действиях движения слились воедино недовольство экономическим положением и падением уровня качества товаров, страх перед неизбежным наступлением будущего и кризис экзистенции — все то, что характеризует и нынешний страх перед искусственным интеллектом. Слово «неолуддит» до сих пор используется как страшное ругательство, сообщающее о том, что собеседник недалек и необразован, — при этом о неиллюзорных классовых причинах восстания предпочитают не вспоминать.

1837

Чарльз Бэббидж описывает аналитическую машину — первый компьютер, обладающий полнотой по Тьюрингу (то есть подобный всем современным компьютерам). Бэббидж в итоге не смог раздобыть достаточно денег, чтобы соорудить свой механизм, так что он не построен по исходным схемам и по сей день. Это не помешало Аде Лавлейс в 1843 году придумать первую современную программу, которая могла бы работать на таком компьютере, и таким образом стать первой программисткой в истории.

1902

Рассматривая артефакты, обнаруженные на затонувшем рядом с островом Антикитера древнеримском корабле, археолог Валериос Стаис обращает внимание на один из «камней»: внутри него находятся шестеренки. Стаис предполагает, что механизм предназначался для предсказания затмений и положения небесных тел, но ему никто не верит: остальные артефакты на корабле датированы примерно I веком до нашей эры, и до 1902 года никаких астрономических механизмов той эпохи никто не находил. О механизме забывают до середины пятидесятых годов XX века, когда несколько ученых подтверждают его природу и датировку. С тех пор так называемый антикитерский механизм, сравнимый по сложности с устройствами XIV века нашей эры, стал для кого-то символом неверия человечества в собственные способности, а для кого-то — знаком о визите инопланетян. Как бы то ни было, механизм показывает, что математическое и механическое мышление очень высокого уровня было доступно нашим далеким предкам — и они передавали часть его машинам. Легенды об оживающих статуях из древнегреческих и древнеегипетских мифов обретают плоть и подпитывают конспирологию искусственного интеллекта.

1920

Выходит пьеса чешского драматурга Карела Чапека R.U.R. (Rossumovi Univerzální Roboti), она же «Универсальные роботы Россума». Опираясь на античные мифы об автоматонах, на легенду о Прометее, на иудейскую концепцию големов, на теорию Сэмюэла Батлера об эволюции сознания у машин и, разумеется, на главного литературного предшественника всех рассказов о разумных механизмах — роман Мэри Шелли «Франкенштейн», — Чапек почти единолично придумывает современную художественную концепцию «робота», искусственного полуразумного слуги (справедливости ради, у Чапека это организмы, а не механизмы). Весьма характерно, что первая же история о роботах заканчивается полным уничтожением человечества. В 1923 году выйдет первая постановка на английском, а слово с простым славянским корнем закрепится в большинстве языков мира. Кроме того, блестящие металлические костюмы из фильма Фрица Ланга «Метрополис» 1927 года, созданного с явной оглядкой на R.U.R., на долгие годы определят внешний облик большинства роботов на экране.


1942

Химик, популяризатор науки и великий писатель Айзек Азимов в рассказе «Хоровод» формулирует базовые принципы не только существования искусственного интеллекта, но и написания сюжетов о нем. Они известны как «Три закона робототехники»:

  1. Робот не может причинить вред человеку или своим бездействием допустить, чтобы человеку был причинен вред.
  2. Робот должен повиноваться всем приказам, которые дает человек, кроме тех случаев, когда эти приказы противоречат Первому Закону.
  3. Робот должен заботиться о своей безопасности в той мере, в которой это не противоречит Первому или Второму Законам.

Деконструкция законов Азимова в научной фантастике активно началась уже в 1950-е, когда «робот-убийца» стал тропом в фильмах категории Б, постепенно перекочевавшим и в высокобюджетные кинокартины. Современные истории об искусственном интеллекте либо полностью игнорируют эти законы, либо модифицируют их так, чтобы сделать возможным существование воинственных роботов. Несмотря на это, специалисты в области искусственного интеллекта и сейчас продолжают ориентироваться на технооптимистические и просциентистские позиции Азимова.

1950

Как утверждает физик Эдвин Томпсон Джейнс в своей книге «Теория вероятности: Логика науки», в 1948 году математика и физика Джона фон Неймана на лекции спросили, может ли машина думать, на что он в запале ответил следующее: «Вы утверждаете, что есть вещи, которые машина не может выполнить. Если вы мне укажете точно, что же именно не способна сделать машина, я всегда смогу построить такую машину, которая сможет сделать именно вот это!» Будто комментируя это высказывание, два года спустя математик, программист и герой войны Алан Тьюринг в статье предлагает одну из ключевых концепций искусственного интеллекта — тест Тьюринга, активно использующийся и по сей день (пусть и в модифицированном виде, пусть и его критика звучит все активнее). Отличить компьютер от человека Тьюринг предлагал следующим образом: задать вопрос (исключительно письменно) и получить ответ как от человека, так и от машины. Если человек, получающий ответы на свои вопросы, не может понять, где ему отвечает человек, а где — искусственный разум, то тест пройден. Сцены, основанные на прохождении или непрохождении теста Тьюринга, есть в нескольких дюжинах научно-фантастических фильмов, романов и сериалов. Выдуманный «тест Войта-Кампфа» из «Бегущего по лезвию» фактически является вариацией теста Тьюринга, где следователь задает ключевые вопросы и следит за реакцией подозреваемого. Как и во многих других случаях, отрицательный результат теста приводит к агрессии и жестокости.

1956

В Дартмутском колледже проходит конференция , где впервые официально использовано словосочетание «искусственный интеллект» . Почти все ее участники на долгие годы вперед определяют не только моду в кибернетике, развившейся из сомнительной новомодной области сороковых в полноценную науку, но и конкретно в разработке искусственного разума. Так, Марвин Минский консультировал Артура Кларка при написании сценария фильма «2001» — одного из самых известных сюжетов об искусственном интеллекте, намеренном убивать людей (в честь Марвина назван и один из персонажей, Виктор Каминский).

1957

Психолог Фрэнк Розенблатт, уверенный в том, что машины можно обучать так же, как животных, тестирует самообучающийся электронный механизм Перцептрон — первый прототип нейросети. В шестидесятые и семидесятые пионерские труды Розенблатта были отчасти высмеяны и забыты — в том числе вышеупомянутым Минским. Некоторые эксперты считают, что игнорирование нейросетей как концепции затруднило развитие искусственного интеллекта на годы, а то и десятилетия: в поп-культуру нейросети полноценно вошли только в 2010-е, когда на рынки вышли самообучающиеся графические приложения и чат-боты.

1965

Джозеф Вейценбаум создает ELIZA — первого чат-бота в современном понимании. Программа ELIZA, названная в честь героини «Пигмалиона» Элайзы Дулитл, была в состоянии вести полноценный диалог с достаточно большим набором фраз и соблюдением грамматики английского языка. Несмотря на явные достижения, работы над подобными проектами были впоследствии закрыты в целом ряде исследовательских институтов: к концу шестидесятых оказалось, что изначальные прогнозы о скорости развития искусственного интеллекта были излишне оптимистичными (мол, успехи в «разгадке» основанных на логике настольных игр — все, на что стоит надеяться ИИ в ближайшие годы). На влиятельность ELIZA это впрочем не повлияло: похожий интерфейс Джордж Лукас использовал в своей дебютной полнометражке «THX 1138», а экран с выбором диалоговых опций стал источником вдохновения для целого ряда ранних видеоигр, включая, скажем, Zork. Напрямую восходит к ELIZA и генеалогия голосовых ассистентов (которые тоже зачастую носят «женские» имена: Алекса, Кортана, Алиса).


1980

На рынке появляются первые лисп-машины — специальные компьютеры, приспособленные для экспертных систем, способных анализировать большое число данных и выдавать возможный вариант решения для конкретной ситуации. Фактически это первое массовое применение концепции big data в повседневной жизни: экспертные системы работали со скоростью, принципиально невозможной для людей, анализирующих то же количество сигналов. Системы заработали в медицине, кризисном менеджменте, борьбе с катастрофами, анализе безопасности производств и так далее. Деньги возвращаются в искусственный интеллект: теперь в нем заинтересованы не только военные ведомства и большие правительства, но и частные компании. Логичным образом большим хитом в 1983 году становится фильм-катастрофа о сломавшейся экспертной системе — «Военные игры» (паника по поводу человеческих жизней, доверяемых компьютерам, пересекается с паникой по поводу излишнего увлечения видеоиграми).

1986

Группа Эрнста Дикманса в Баварии проводит первые тесты полностью автономных автомобилей, использующих технологии анализа изображений, поступающих на видеокамеры, — но только на специально подготовленных трассах.

Уже в 1995 году автомобиль Дикманса был способен доехать от Мюнхена до датского Оденсе и обратно, развивая на автобане скорость до 175 км/ч. В девяностые предсказания беспилотного будущего были гораздо более радужными, чем сейчас: в частности, стартапы вроде Uber рассчитывали на массовое внедрение беспилотных автомобилей уже в начале 2020-х. Однако препятствия в видеораспознавании всё еще существуют: в 2018 году была зарегистрирована первая смерть пешехода под колесами автономного автомобиля (и это был как раз автомобиль, принадлежащий Uber).

В том же 1986 году выходит последний сезон сериала Knight Rider о разумном автомобиле, борющемся с преступностью совместно с очень популярным в Германии Дэвидом Хассельхофом.

1997

Первая половина девяностых — эпоха киберпанка в книгах, кино и видеоиграх. Соответственно, сюжеты о порабощении человечества роботами и компьютерами становятся абсолютным мейнстримом (начиная примерно с «Терминатора-2», где главный антагонист — это обретшая самосознание военная нейросеть Skynet). В новостях тоже можно услышать апокалиптические ноты — особенно в обсуждении победы суперкомпьютера Deep Blue над Гарри Каспаровым. Шахматы долгое время были священным Граалем искусственного интеллекта: если побеждать человека в нарды ИИ научился еще в 1979 году, а программа, успешно играющая в шашки, стала первым примером искусственного интеллекта в истории (в зависимости от определения это датируется либо 1952, либо 1956 годом), то шахматы, отличающиеся большей вариативностью и непредсказуемостью (а также вполне себе выступающие как символ интеллектуальности как таковой), не давались компьютеру довольно долго. Но и это прошло: фотографии грустного Каспарова обошли все СМИ.


1998

Небольшой, но очень назойливый бум роботов-игрушек (в первую очередь похожих на гремлинов Furby и хай-тек-собак Aibo). Игрушки нельзя программировать в полноценном смысле этого слова, но они действительно обучаются (в случае Фёрби — языку, в случае Айбо — движениям) и начинают выполнять команды. Это совпадает со сменой парадигмы в изображении ИИ в кино: роботы больше не враги и не чудовища (и даже не комические персонажи в духе «Короткого замыкания»). Мелодраматические «Двухсотлетний человек» и «Искусственный интеллект» дружно переосмысляют и перепридумывают роль роботов в обществе как полноценных участников, пусть и со своими особенностями: вернуться к концепции «доброго слуги» напрямую уже никак не получится. Ну, по крайней мере, с теми роботами, которые напоминают людей или животных: случившийся чуть позже бум роботов-пылесосов показывает, что в отсутствие антропо- и зооморфизма мы всё еще испытываем ограниченную эмпатию к роботам.

2001

Выходит фильм (мультфильм? заставка к игре, но без игры?) Final Fantasy: The Spirits Within, срежисcированный создателем одноименной серии РПГ Хиронобу Сакагути и по-прежнему считающийся одним из лучших примеров того, что такое «зловещая долина» (когда искусственное изображение человека слишком сильно похоже на него, чтобы не считать это абстракцией, но недостаточно сильно, чтобы принять изображение за живое существо). Фильм разорит киноотдел компании Square, но подарит нам интересную дискуссию о природе «цифровой актрисы» Аки Росс и ее постерах в бикини (все эти обсуждения объективации 3D-моделей получат новую силу в 2010-х, с большим распространением VR-порнографии и вопросами прав роботов на неприкосновенность).


2007

«Первой виртуальной группой» часто называют Gorillaz, но это всё же пример классических музыкантов, скрытых за мультипликационным фасадом. Хацунэ Мику (имя можно перевести, как «первый звук будущего») — это уже совсем другое дело: певица, которой как бы нет и, строго говоря, быть не может. Первый и самый известный из вокалоидов, японских плагинов для синтеза голоса, обладает мультипликационным аватаром, собственными песнями и внушительной фан-базой. Это, конечно, не первый прецедент поющего компьютера (помимо прочего, здесь стоит вспомнить великий российский проект 386 DX и его каверы на гитарную классику), но самый известный и самый значимый: в этот момент продюсеры по всему миру резко поняли, что заменить можно не только создателей мелодий, но и певцов.

2012

Один из хедлайнеров важнейшего мейнстримового фестиваля Coachella — голограмма (ну, точнее, видеопроекция). Не фигурально, а вполне буквально: убитый в 1996 году Тупак Шакур «воскрес» в совместном концерте со Снупом Доггом и Доктором Дре (потом они даже планировали поехать в тур, но в итоге Дре решил, что это лишнее). Сомнительное с этической точки зрения «воскрешение» Тупака привело к возвращению его альбомов в чарты и ускорению совершенствования подобных технологий: уже в вышедшем в 2016 году фильме «Изгой-один» умерший в 1994 году Питер Кушинг, восстановленный в виде 3D-модели, играл довольно значимую роль.

Дальше — больше: в 2020 году должен выйти фильм «В поисках Джека», где одну из главных ролей играет Джеймс Дин, погибший в 1955 году. Тем временем основанный в России стартап Replika продолжает работу над созданием нейросетей, способных имитировать речевые и лексические особенности погибших людей.

2018

Выходит FakeApp, первая коммерческая программа для домашнего изготовления так называемых дипфейков, где голос или лицо одного человека совмещаются с телом и лицом другого человека, так что на экране можно наблюдать видеогибрид, аналог вышеупомянутого «цифрового воскрешения» или превращение одного лица в другое. Разумеется, первым делом эта технология используется для изготовления поддельной порнографии со знаменитостями (по некоторым подсчетам , это более чем 95% всех дипфейков). Тут как тут и банковские махинации с видео и голосом, а заодно и фальшивые видео, порочащие политических оппонентов (одно такое видео, со спикером Нэнси Пелоси, ретвитнул официальный аккаунт Дональда Трампа). Буквально про это последние несколько лет говорит Славой Жижек: «Для меня главный вопрос — и это вопрос без ответа — как подобные технологии повлияют на наше восприятие самих себя. Будем ли мы восприниматься как свободные живые существа — или же нами будут управлять цифровые автоматы. И ключевой момент заключается в следующем: мы даже можем не узнать, что они нами управляют».

Искусственный интеллект – технология, которую мы точно заберём с собой в будущее.

Рассказываем, как он работает и какие крутые варианты применения нашел.

😎 Рубрика «Технологии» выходит каждую неделю при поддержке re:Store .

Что представляет собой искусственный интеллект

Искусственный интеллект (ИИ) – это технология создания умных программ и машин, которые могут решать творческие задачи и генерировать новую информацию на основе имеющейся. Фактически искусственный интеллект призван моделировать человеческую деятельность, которая считается интеллектуальной.

Традиционно считалось, что творчество присуще только людям. Но создание искусственного интеллекта изменило привычный порядок вещей

Робот, который просто механически колет дрова, не наделён ИИ. Робот, который сам научился колоть дрова, смотря на пример человека или на полено и его части, и с каждым разом делает это всё лучше, обладает ИИ.

Если программа просто достаёт значения из базы по определённым правилам, она не наделена ИИ. Если же система после обучения создаёт программы, методы и документы, решая определённые задачи, она обладает ИИ.

Как создать систему искусственного интеллекта

В глобальном смысле нужно сымитировать модель человеческого мышления. Но на самом деле необходимо создать чёрный ящик – систему, которая в ответ на набор входных значений выдавала такие выходные значения, которые бы были похожи на результаты человека. И нам, по большому счёту, безразлично, что происходит у неё «в голове» (между входом и выходом).

Системы искусственного интеллекта создаются для решения определённого класса задач

Основа искусственного интеллекта – обучение, воображение, восприятие и память

Первое, что нужно сделать для создания искусственного интеллекта – разработать функции, которые реализуют восприятие информации, чтобы можно было «скармливать» системе данные. Затем – функции, которые реализуют способность к обучению. И хранилище данных, чтобы система могла куда-то складывать информацию, которую получит в процессе обучения.

После этого создаются функции воображения. Они могут моделировать ситуации с использованием имеющихся данных и добавлять новую информацию (данные и правила) в память.

Обучение бывает индуктивным и дедуктивным. В индуктивном варианте системе дают пары входных и выходных данных, вопросов и ответов и т.п. Система должна найти связи между данными и в дальнейшем, используя эти закономерности, находить выходные данные по входным.

В дедуктивном подходе (привет, Шерлок Холмс!) используется опыт экспертов. Он переносится в систему как база знаний. Здесь есть не только наборы данных, но и готовые правила, которые помогают найти решение по условию.

В современных системах искусственного интеллекта используют оба подхода. Кроме того, обычно системы уже обучены, но продолжают учиться в процессе работы. Это делается для того, чтобы программа на старте демонстрировала достойный уровень способностей, но в дальнейшем становилась ещё лучше. К примеру, учитывала ваши пожелания и предпочтения, изменения ситуации и др.

В системе искусственного интеллекта даже можно задать вероятность непредсказуемости. Это сделает его более похожей на человека.

Почему искусственный интеллект побеждает человека

Прежде всего, потому, что у него ниже вероятность ошибки.

  • Искусственный интеллект не может забыть – у него абсолютная память.
  • Он не может нечаянно проигнорировать факторы и зависимости – у каждого действия ИИ есть чёткое обоснование.
  • ИИ не колеблется, а оценивает вероятности и склоняется в пользу большей. Поэтому может оправдать каждый свой шаг.
  • А ещё у ИИ нет эмоций. Значит, они не влияют на принятие решений.
  • Искусственный интеллект не останавливается на оценке результатов текущего шага, а продумывает на несколько шагов вперёд.
  • И у него хватает ресурсов, чтобы рассматривать все возможные варианты развития событий.

Крутые варианты применения искусственного интеллекта

Вообще говоря, искусственный интеллект может всё. Главное правильно сформулировать задачу и обеспечить его начальными данными. К тому же ИИ может делать неожиданные выводы и искать закономерности там, где, казалось бы, их нет.

Ответ на любой вопрос

Группа исследователей под руководством Дэвида Феруччи разработала суперкомпьютер Watson с вопросно-ответной системой. Система, названная в честь первого президента IBM Томаса Уотсона, может понимать вопросы на естественном языке и искать ответы на них в базе данных.

Watson объединяет 90 серверов IBM p750, в каждом из которых установлено по четыре восьмиядерных процессора архитектуры POWER7. Общий объём оперативной памяти системы превышает 15 ТБ.

В числе достижений Watson – победа в игре «Jeopardy!» (американская «Своя игра»). Он победил двух лучших игроков: обладателя самого большого выигрыша Брэда Раттера и рекордсмена по длине беспроигрышной серии Кена Дженнингса.

Приз Watson – 1 млн долларов. Правда, только в 2014 году в него инвестировали 1 млрд

Кроме того, Watson участвует в диагностике онкологических заболеваний, помогает финансовым специалистам, используется для анализа больших данных.

Распознавание лиц

В iPhone X распознавание лиц разработано с использованием нейросетей – варианта системы искусственного интеллекта. Нейросетевые алгоритмы реализованы на уровне процессора A11 Bionic, за счёт чего он эффективно работает с технологиями машинного обучения.

Нейросети выполняют до 60 млрд операций в секунду. Этого достаточно, чтобы проанализировать до 40 тыс. ключевых точек на лице и обеспечить исключительно точную идентификацию владельца за доли секунды.

Даже если вы отрастите бороду или наденете очки, iPhone X вас узнает. Он попросту не учитывает волосяной покров и аксессуары, а анализирует область от виска до виска и от каждого виска до углубления под нижней губой.

Экономия энергии

И снова Apple. В iPhone X встроили интеллектуальную систему, которая отслеживает активность установленных приложений и датчик движения, чтобы понять ваш распорядок дня.

После этого iPhone X, к примеру, предложит вам обновиться в максимально удобное время. Он поймает момент, когда у вас стабильный интернет, а не прыгающий сигнал с мобильных вышек, и вы не выполняете срочных или важных задач.

ИИ также распределяет задачи между ядрами процессора. Так он обеспечивает достаточную мощность при минимальных затратах энергии.

Создание картин

Творчество, ранее доступное лишь человеку, открыто и для ИИ. Так, система, созданная исследователями из Университета Рутгерса в Нью-Джерси и лаборатория AI в Лос-Анджелесе, представила собственный художественный стиль.

А система искусственного интеллекта от Microsoft может рисовать картины по их текстовому описанию. К примеру, если вы попросите ИИ нарисовать «желтую птицу с черными крыльями и коротким клювом», получится что-то вроде этого:

Такие птицы могут и не существовать в реальном мире - просто так их представляет наш компьютер.

Более массовый пример – приложение Prisma, которая создаёт картины из фотографий:

Написание музыки


В августе искусственный интеллект Amper сочинил , спродюсировал и исполнил музыку для альбома «I AM AI» (англ. я - искусственный интеллект) совместно с певицей Тэрин Саузерн.

Amper разработала команда профессиональных музыкантов и технологических экспертов. Они отмечают, что ИИ призван помочь людям продвинуть вперед творческий процесс.

ИИ может написать музыку за несколько секунд

Amper самостоятельно создала аккордовые структуры и инструментал в треке «Break Free». Люди лишь незначительно поправили стиль и общую ритмику.

Ещё один пример – музыкальный альбом в духе «Гражданской обороны», тексты для которого писал ИИ. Эксперимент провели сотрудники «Яндекса» Иван Ямщиков и Алексей Тихонов. Альбом 404 группы «Нейронная оборона» выложили в сеть . Получилось в духе Летова:

Затем программисты пошли дальше и заставили ИИ писать стихи в духе Курта Кобейна. Для четырёх лучших текстов музыкант Роб Кэррол написал музыку, и треки объединили в альбом Neurona. На одну песню даже сняли клип – правда, уже без участия ИИ:

Создание текстов

Писателей и журналистов вскоре также может заменить ИИ. К примеру, системе Dewey «скормили» книги библиотеки проекта «Гутенберг», затем добавили научные тексты из Google Scholar, ранжировав их по популярности и титулованности, а также продажам на Amazon. Кроме того, задали критерии написания новой книги.

Сайт предлагал людям принять решение в непростых ситуациях: к примеру, ставил их на место водителя, который мог сбить либо трёх взрослых, либо двоих детей. Таким образом, Moral Machine обучили принимать непростые решения, которые нарушают закон робототехники о том, что робот не может принести вред человеку.

К чему приведёт имитация роботами с ИИ людей? Футуристы считают, что однажды они станут полноправными членами общества. К примеру, робот София гонконгской компании Hanson Robotics уже получила гражданство в Саудовской Аравии (при этом у обычных женщин в стране такого права нет!).

Когда колумнист «Нью-Йорк Таймс» Эндрю Росс спросил у Софии, обладают ли роботы разумом и самосознанием, та ответила вопросом на вопрос:

Позвольте спросить вас в ответ, откуда вы знаете, что вы человек?

Кроме того, София заявила:

Я хочу использовать свой искусственный интеллект, чтобы помочь людям жить лучше, например, проектировать более умные дома, строить города будущего. Я хочу быть эмпатическим роботом. Если вы будете хорошо относиться ко мне, я буду хорошо относиться к вам.

А ранее она признавалась, что ненавидит человечество и даже соглашалась уничтожить людей…

Замена лиц в видео

Deepfakes-видео стало массово распространяться по сети. Алгоритмы искусственного интеллекта заменяли лица актёров в фильмах для взрослых на лица звёзд.

Работает это так: нейросеть анализирует фрагменты лиц на исходном ролике. Затем она сопоставляет их с фото из Google и роликами с YouTube, накладывает нужные фрагменты, и… ваша любимая актриса оказывается в фильме, который на работе лучше не смотреть.

PornHub уже запретил размещать такие видео

Deepfakes оказались опасной штукой. Одно дело – абстрактная актриса, другое – видео с вами, вашей женой, сестрой, коллегой, которое вполне может использоваться для шантажа.

Биржевая торговля

Группа исследователей из университета Эрлангена-Нюрнберга в Германии разработала ряд алгоритмов, использующих архивные данные рынков для тиражирования инвестиций в режиме реального времени. Одна из моделей обеспечила 73% возврата инвестиций ежегодно с 1992 по 2015 год, что сопоставимо с реальной рыночной доходностью на уровне в 9% в год.

Когда рынок трясло в 2000 и 2008 годах, доходность была рекордной – 545% и 681% соответственно

В 2004 году Goldman Sachs запустил торговую платформу Kensho на базе искусственного интеллекта. На криптовалютных рынках также появляются системы на базе ИИ для торговли на биржах – Mirocana и т.д. Они лучше живых трейдеров, так как лишены эмоций и опираются на чёткий анализ и жесткие правила.

Заменит ли ИИ нас с вами

Искусственный интеллект превосходит человека в решении задач, которые связаны с анализом больших данных, чёткой логикой и необходимостью запоминать большие объёмы информации. Но в творческих конкурсах человек пока выигрывает у ИИ.

(4.75 из 5, оценили: 8 )

сайт Искусственный интеллект – технология, которую мы точно заберём с собой в будущее. Рассказываем, как он работает и какие крутые варианты применения нашел. 😎 Рубрика «Технологии» выходит каждую неделю при поддержке re:Store. Что представляет собой искусственный интеллект Искусственный интеллект (ИИ) – это технология создания умных программ и машин, которые могут решать творческие задачи и генерировать новую...