Признак лейбница примеры. Знакопеременный ряд. Признак Лейбница. Функциональные ряды. Степенные ряды. Радиус сходимости. Интервал сходимости

Ряд называется знакочередующимся, если любые два соседних его члена имеют разные знаки, т.е. ряды вида u 1 – u 2 + u 3 – u 4 +… + u n + …, где u 1 , u 2 , …, u n , … положительны.

Теорема Лейбница. Если члены знакочередующегося ряда, взятые по абсолютной величине, монотонно убывают и модуль общего члена ряда стремится к нулю при , т.е.
, то ряд сходится.

Пример 1.

Исследовать сходимость знакочередующегося ряда:

.

Члены ряда, взятые по абсолютной величине, монотонно убывают:


Ряд сходится.

1.6. Знакопеременные ряды. Абсолютная и условная сходимость ряда

Ряд u 1 + u 2 +…+ u n +… называется знакопеременным, если среди его членов имеются как положительные, так и отрицательные.

Знакочередующиеся ряды являются частным случаем знакопеременных рядов.

Теорема. Дан знакопеременный ряд u 1 + u 2 +…+ u n +…(1). Составим ряд | u 1 |+| u 2 |+…+| u n |+… (2). Если ряд (2), составленный из абсолютных величин членов ряда (1), сходится, то ряд (1) сходится.

Определение. Знакопеременный ряд u 1 + u 2 +…+ u n +… называется абсолютно сходящимся, если сходится ряд, составленный из абсолютных величин его членов |u 1 |+| u 2 |+…+| u n |+… .

Если же знакопеременный ряд (1) сходится, а ряд (2), составленный из абсолютных величин его членов, расходится, то данный знакопеременный ряд (1) называется условно или неабсолютно сходящимся рядом.

Пример 1.

Исследовать на сходимость и абсолютную сходимость ряд:
.

Знакочередующийся ряд сходится по теореме Лейбница, т.к.
. Члены ряда монотонно убывают и
. Теперь исследуем данный ряд на абсолютную сходимость. Рассмотрим ряд, составленный из абсолютных величин членов данного ряда:. Исследуем сходимость этого ряда с помощью признака Даламбера:
. Ряд сходится. Значит, заданный знакочередующийся ряд сходится абсолютно.

Пример 2.

Исследовать на сходимость и абсолютную сходимость ряд:
.

По теореме Лейбница
. Ряд сходится. Ряд, составленный из абсолютных величин членов данного ряда, имеет вид
. По признаку Даламбера получим
. Ряд сходится, значит, заданный знакопеременный ряд сходится абсолютно.

2. Функциональные ряды. Область сходимости функционального ряда

Рассмотрим последовательность функций, заданных на некотором промежутке [ a , b ] :

f 1 (x ), f 2 (x ), f 3 (x ) … f n (x ), ….

Приняв эти функции в качестве членов ряда, образуем ряд:

f 1 (x ) + f 2 (x ) + f 3 (x ) + … + f n (x ) + …, (1)

который называется функциональным рядом .

Например: sin(x) + sin(2x) + sin(3x) + … + sin(nx) + …

В частном случае функциональным рядом является ряд:

который называется степенным рядом , где
постоянные числа, называемыекоэффициентами членов степенного ряда .

Степенной ряд может быть записан и в такой форме:

где
некоторое постоянное число.

При определенном фиксированном или числовом значении x получим числовой ряд, который может быть сходящимся или расходящимся.

Определение : Совокупность всех значений х (или всех точек х числовой прямой), при которых степенной ряд сходится, называется областью сходимости степенного ряда.

Пример 1.

Найти область сходимости степенного ряда:

Решение (1 способ) .

Применим признак Даламбера.


Так как признак Даламбера применим к рядам только с положительными членами , то выражение, стоящее под знаком предела, взято по абсолютной величине.

По признаку Даламбера ряд сходится, если
и
.

Т.е. ряд сходится, если < 1, откуда
или-3< x <3.

Получим интервал сходимости данного степенного ряда: (-3;3).

В крайних точках интервала x =
, будем иметь
.

В этом случае теорема Даламбера не дает ответа на вопрос о сходимости ряда.

Исследуем ряд на сходимость в граничных точках:

x = -3 ,

Получим знакочередующийся ряд. Исследуем его на сходимость по признаку Лейбница:

1.
члены ряда, взятые по абсолютной величине, монотонно убывают.

2.
Следовательно, ряд в точкеx = -3 сходится.

x = 3,

Получим положительный ряд. Применим интегральный признак Коши сходимости ряда.

члены ряда монотонно убывают.

Функция
на промежутке
:


.

Несобственный интеграл расходится, значит, ряд в точке x=3 расходится.

Ответ:

Второй способ определения области сходимости степенного ряда основан на применении формулы радиуса сходимости степенного ряда:

, где и
коэффициентыи
членов ряда.

Для данного ряда имеем:

. R =3.

ряд сходится

Интервал сходимости ряда: -3< x <3.

Далее, как и в предыдущем случае, надо исследовать в граничных точках: x =
.

Ответ: область сходимости ряда [-3;3).

Отметим, что второй способ определения области сходимости степенного ряда с использованием формулы радиуса сходимости ряда
более рационален.

Пример 2.

Найти область сходимости степенного ряда:
.

Найдем R – радиус сходимости ряда.

,
,
.

.
.

Интервал сходимости ряда (-;).

Исследуем ряд на сходимость в точках x = -иx = .

x = - ,

Получим знакочередующийся ряд. Применим признак Лейбница:

1.
члены ряда, взятые по абсолютной величине, монотонно убывают.

2.
, следовательно, ряд в точкеx = -сходится.

x = ,
.

Получили ряд с положительными членами. Применим интегральный признак Коши.

Здесь
:

, члены ряда
монотонно убывают.

Функция
на промежутке
:


.

Несобственный интеграл расходится, ряд расходится.

Ответ: [-;) – область сходимости ряда.

Знакочередующимися рядами называются ряды, члены которых попеременно то положительны, то отрицательны . Чаще всего рассматриваются знакочередующиеся ряды, в которых члены чередуются через один: за каждым положительным следует отрицательный, за каждым отрицательным - положительный. Но встречаются знакочередующиеся ряды, в которых члены чередуются через два, три и так далее.

Рассмотрим пример знакочередующегося ряда, начало которого выглядит так:

3 − 4 + 5 − 6 + 7 − 8 + ...

и сразу же общие правила записи знакочередующихся рядов.

Как и в случае любых рядов, для продолжения данного ряда нужно задать функцию, определяющую общий член ряда. В нашем случае это n + 2 .

А как задать чередование знаков членов ряда? Умножением функции на минус единицу в некоторой степени. В какой степени? Сразу же подчеркнём, что не любая степень обеспечивает чередование знаков при членах ряда.

Допустим, мы хотим, чтобы первый член знакочередующегося ряда был с положительным знаком, как это и имеет место в приведённом выше примере. Тогда минус единица должна быть в степени n − 1 . Начните подставлять в это выражение числа начиная с единицы и вы получите в качестве показателя степени при минус единице то чётное, то нечётное число. Это и есть необходимое условие чередования знаков! Такой же результат получим при n + 1 . Если же мы хотим, чтобы первый член знакочередующегося ряда был с отрицательным знаком, то можем задать этот ряд умножением функции общего члена на единицу в степени n . Получим то чётное, то нечётное число и так далее. Как видим, уже описанное условие чередования знаков выполнено.

Таким образом, можем записать приведённый выше знакочередующийся ряд в общем виде:

Для чередования знаков члена ряда степень минус единицы может быть суммой n и любого положительного или отрицательного, чётного или нечётного числа. То же самое относится к 3n , 5n , ... То есть, чередование знаков членов знакочередующегося ряда обеспечивает степень при минус единицы в виде суммы n , умноженного на любое нечётное число и любого числа.

Какие степени при минус единице не обеспечивают чередование знаков членов ряда? Те, которые присутствуют в виде n , умноженного на любое чётное число, к которому прибавлено любое число, включая нуль, чётное или нечётное. Примеры показателей таких степеней: 2n , 2n + 1 , 2n − 1 , 2n + 3 , 4n + 3 ... В случае таких степеней в зависимости от того, с каким числом складывается "эн", умноженное на чётное число, получаются или только чётные, или только нечётные числа, что, как мы уже выяснили, не даёт чередования знаков членов ряда.

Знакочередующиеся ряды - частный случай знакопеременных рядов . Знакопеременные ряды - это ряды с членами произвольных знаков , то есть такими, которые могут быть положительными и отрицательными в любой последовательности. Пример знакопеременного ряда:

3 + 4 + 5 + 6 − 7 + 8 − ...

Далее рассмотрим признаки сходимости знакочередующихся и знакопеременных рядов. Условную сходимость знакочередующихся рядов можно установить при помощи признака Лейбница. А для более широкого круга рядов - знакопеременных (в том числе и знакочередующихся) - действует признак абсолютной сходимости.

Сходимость знакочередующихся рядов. Признак Лейбница

Для знакочередующихся рядов имеет место следующий признак сходимости – признак Лейбница.

Теорема (признак Лейбница). Ряд сходится, а его сумма не превосходит первого члена, если одновременно выполняются следующие два условия:

  • абсолютные величины членов знакочередующегося ряда убывают: u 1 > u 2 > u 3 > ... > u n > ... ;
  • предел его общего члена при неограниченном возрастании n равен нулю.

Следствие. Если за сумму знакочередующегося ряда принять сумму его n членов, то допущенная при этом погрешность не превзойдёт абсолютной величины первого отброшенного члена.

Пример 1. Исследовать сходимость ряда

Решение. Это знакочередующийся ряд. Абсолютные величины его членов убывают:

а предел общего члена

равен нулю:

Оба условия признака Лейбница выполнены, поэтому ряд сходится.

Пример 2. Исследовать сходимость ряда

Решение. Это знакочередующийся ряд. Сначала докажем, что :

, .

Если N = 1 , то для всех n > N выполняется неравенство 12n − 7 > n . В свою очередь для каждого n . Поэтому , то есть члены ряда по абсолютному значению убывают. Найдём предел общего члена ряда (применяя правило Лопиталя ):

Предел общего члена равен нулю. Оба условия признака Лейбница выполнены, поэтому ответ на вопрос о сходимости - положительный.

Пример 3. Исследовать сходимость ряда

Решение. Дан знакочередующийся ряд. Выясним, выполняется ли первое условие признака Лейбница, то есть требование . Чтобы требование выполнялось, необходимо, чтобы

Мы убедились, что требование выполняется для всех n > 0 . Первый признак Лейбница выполняется. Найдём предел общего члена ряда:

.

Предел не равен нулю. Таким образом, второе условие признака Лейбница не выполняется, поэтому о сходимости не может быть и речи.

Пример 4. Исследовать сходимость ряда

Решение. В данном ряде за двумя отрицательными членами следуют два положительных. Данный ряд - также знакочередующийся. Выясним, выполняется ли первое условие признака Лейбница.

Требование выполняется для всех n > 1 . Первый признак Лейбница выполняется. Выясним, равен ли нулю предел общего члена (применяя правило Лопиталя):

.

Получили нуль. Таким образом, оба условия признака Лейбница выполняются. Сходимость имеет место быть.

Пример 5. Исследовать сходимость ряда

Решение. Это знакочередующийся ряд. Выясним, выполняется ли первое условие признака Лейбница. Так как

,

Так как n 0 , то 3n + 2 > 0 . В свою очередь, для каждого n , поэтому . Следовательно, члены ряда по абсолютному значению убывают. Первый признак Лейбница выполняется. Выясним, равен ли нулю предел общего члена ряда (применяя правило Лопиталя):

.

Получили нулевое значение. Оба условия признака Лейбница выполняются, поэтому данный ряд сходится.

Пример 6. Исследовать сходимость ряда

Решение. Выясним, выполняется ли первое условие признака Лейбница для этого знакочередующегося ряда:

Члены ряда по абсолютному значению убывают. Первый признак Лейбница выполняется. Выясним, равен ли нулю предел общего члена:

.

Предел общего члена не равен нулю. Второе условие признака Лейбница не выполняется. Следовательно, данный ряд расходится.

Признак Лейбница является признаком условной сходимости ряда . Значит, выводы о сходимости и расходимости рассмотренных выше знакочередующихся рядов можно дополнить: эти ряды сходятся (или расходятся) условно.

Абсолютная сходимость знакопеременных рядов

Пусть ряд

– знакопеременный. Рассмотрим ряд, составленный из абсолютных величины его членов:

Определение. Ряд называется абсолютно сходящимся, если сходится ряд, составленный из абсолютных величин его членов . Если же знакопеременный ряд сходится, а ряд, составленный из абсолютных величин его членов, расходится, то такой знакопеременный ряд называется условно или неабсолютно сходящимся .

Теорема. Если ряд абсолютно сходится, то он сходится и условно.

Пример 7. Установить, сходится ли ряд

Решение. Соответствующим данному ряду рядом с положительными членами является ряд Это обобщённый гармонический ряд , в котором , поэтому ряд расходится. Проверим соблюдение условий признака Лейбница.

Напишем абсолютные значения первых пяти членов ряда:

.

Как видим, члены ряда по абсолютному значению убывают. Первый признак Лейбница выполняется. Выясним, равен ли нулю предел общего члена:

Получили нулевое значение. Оба условия признака Лейбница выполняются. То есть по признаку Лейбница сходимость имеет место быть. А соответствующий ряд с положительными членами расходится. Следовательно, данный ряд сходится условно.

Пример 8. Установить, сходится ли ряд

абсолютно, условно, или расходится.

Решение. Соответствующим данному ряду рядом с положительными членами является ряд Это обобщённый гармонический ряд, в котором , поэтому ряд расходится. Проверим соблюдение условий признака Лейбница.

Определение 1 . Числовой ряд ,
где , называется знакочередующимся рядом.

Для установления сходимости таких рядов существует достаточный

признак сходимости, называемый признаком Лейбница.

Теорема 1 (признак Лейбница) . Пусть числовой ряд удовлетворяет условиям:
1) , т.е. этот ряд знакочередующийся;
2) члены этого ряда монотонно убывают по абсолютной величине: т.е. ;
3) общий член ряда стремится к 0, т.е. .
Тогда ряд сходится и его сумма .

Доказательство . 1) Сначала рассмотрим частичную сумму чётного порядка и запишем её в виде: . В силу условия 2) теоремы 1 все выражения в скобках положительны, тогда сумма и последовательность монотонно возрастает: .

Теперь запишем эту сумму иначе: .
В последнем выражении каждое из выражений в скобках положительно, поэтому , из чего следует, что последовательность является ограниченной, и так как она монотонно возрастает, то она сходится. Другими словами существует , причём .

2) Рассмотрим частичную сумму нечётного порядка , которая положительна. Можно показать, что последовательность монотонно возрастает, так как монотонно возрастает последовательность и . Запишем выражение для в виде: , так как все выражения в скобках положительны, то . По условию 3) теоремы 1 , тогда , откуда .

Итак, при всех n (чётных или нечётных), , следовательно, исходный ряд сходится. Теорема доказана.

Замечание 1 . Признак Лейбница можно также применять к рядам, для которых условия теоремы выполняются с некоторого номера N.
Замечание 2 . Условие 2) теоремы 1 (признак Лейбница) о монотонности членов ряда существенно.

Пример 1 . Исследовать на сходимость ряд .

Решение. Обозначим . К данному ряду применим признак Лейбница. Проверим выполнение условий теоремы 1: условие 1) ряд знакочередующийся ; условие 2) выполнено: ; условие 3) также выполнено: . Следовательно, по признаку Лейбница данный ряд сходится, причем его сумма .

Ответ: ряд сходится.

3.2. Знакопеременные ряды. Абсолютная и условная сходимость.
Достаточный признак сходимости знакопеременных рядов

Числовой ряд , члены которого имеют произвольные знаки (+), (−), называется знакопеременным рядом . Рассмотренные выше знакочередующиеся ряды являются частным случаем знакопеременного ряда; понятно, что не всякий знакопеременный ряд является знакочередующимся. Например, ряд − знакопеременный, но не являющийся знакочередующимся рядом.

Отметим, что в знакопеременном ряде членов как со знаком (+), так и со знаком (−) бесконечно много. Если это не выполняется, например, ряд содержит конечное число отрицательных членов, то их можно отбросить и рассматривать ряд, составленный только из положительных членов, и наоборот.

Определение 1 . Если числовой ряд сходится и его сумма равна S ,
а частичная сумма равна S n , то называется остатком ряда , причём , т.е. остаток сходящегося ряда стремится к 0.

Рассмотрим сходящийся знакочередующийся ряд как частный случай знакопеременного ряда

Где . Запишем его в виде , тогда по признаку Лейбница ; так как , то , т.е. остаток сходящегося ряда стремится к 0.

Для знакопеременных рядов вводятся понятия абсолютной и условной

сходимости.

Определение 2 . Ряд называется сходящимся абсолютно , если сходится ряд, составленный из абсолютных величин его членов .

Определение 3 . Если числовой ряд сходится, а ряд , составленный из абсолютных величин его членов, расходится, то исходный ряд называется условно (неабсолютно ) сходящимся .

Теорема 2 (достаточный признак сходимости знакопеременных рядов) . Знакопеременный ряд сходится, причём абсолютно, если сходится ряд, составленный из абсолютных величин его членов .

Доказательство . Обозначим через частичную сумму ряда : , а через − частичную сумму ряда : . Обозначим через сумму всех положительных членов, а через сумму абсолютных величин всех отрицательных членов, входящих в . Очевидно, что .

По условию теоремы ряд сходится, тогда существует , и так как последовательность − монотонно возрастающая и неотрицательная, то . Очевидно, что , тогда последовательности и являются монотонно возрастающими и ограниченными, причем их пределы равны и . Тогда . Значит, исходный знакопеременный ряд сходится и сходится абсолютно. Теорема доказана.

Замечание . Теорема 2 даёт только достаточное условие сходимости знакопеременных рядов. Обратная теорема неверна, т.е. если знакопеременный ряд сходится, то не обязательно, что сходится ряд, составленный из модулей (он может быть как сходящимся, так и расходящимся). Например, ряд сходится по признаку Лейбница (см. пример 1 данной лекции), а ряд, составленный из абсолютных величин его членов, (гармонический ряд) расходится.

Пример 2. Исследовать на условную и абсолютную сходимость ряд .

Решение. Данный ряд является знакопеременным, общий член которого обозначим: . Составим ряд из абсолютных величин и применим к нему признак Даламбера. Составим предел , где , . Проведя преобразования, получаем . Таким образом, ряд сходится, а значит, исходный знакопеременный ряд сходится абсолютно.
Ответ : ряд абсолютно сходится.

Пример 3. Исследовать на абсолютную и условную сходимость ряд .

Решение. А) Исследуем ряд на абсолютную сходимость. Обозначим и составим ряд из абсолютных величин . Получаем ряд с положительными членами, к которому применяем предельный признак сравнения рядов (теорема 2, лекция 2, разд. 2.2). Для сравнения с рядом рассмотрим ряд, который имеет вид . Этот ряд является рядом Дирихле с показателем , т.е. он расходится. Составим и вычислим следующий предел . Так как предел существует, не равен 0 и не равен ∞, то оба ряда и ведут себя одинаково. Таким образом, ряд расходится, а значит, исходный ряд не является абсолютно сходящимся.

Б) Далее исследуем исходный ряд на условную сходимость. Для этого проверим выполнение условий признака Лейбница (теорема 1, разд. 3.1). Условие 1): , где , т.е. этот ряд знакочередующийся. Для проверки условия 2) о монотонном убывании членов ряда используем следующий метод. Рассмотрим вспомогательную функцию , определенную при (функция такова, что при имеем ). Для исследования этой функции на монотонность найдём её производную: . Эта производная при . Следовательно, функция монотонно убывает при указанных значениях х . Полагая , получаем , где . Это означает, чтоусловие 2) выполнено. Для проверки условия 3) находим предел общего члена : , т.е. третье условие выполняется. Таким образом, для исходного ряда выполнены все условия признака Лейбница, т.е. он сходится.

Ответ : ряд условно сходится.

Числовой ряд, содержащий бесконечное множество положительных и бесконечное множество отрицательных членов, называется знакопеременным.

Абсолютная и условная сходимость

Ряд называется абсолютно сходящимся, если ряд также сходится.

Если ряд сходится абсолютно, то он является сходящимся (в обычном смысле). Обратное утверждение неверно.

Ряд называется условно сходящимся, если сам он сходится, а ряд, составленный из модулей его членов, расходится.

Исследовать на сходимость ряд .

Применим достаточный признак Лейбница для знакочередующихся рядов. Получаем

поскольку . Следовательно, данный ряд сходится.

38. Знакочередующиеся ряды. Признак Лейбница.

Частным случаем знакопеременного ряда является знакочередующийся ряд, то есть такой ряд, в котором последовательные члены имеют противоположные знаки.

Признак Лейбница

Для знакочередующихся рядом действует достаточный признак сходимости Лейбница.

Пусть {an} является числовой последовательностью, такой, что

1. an+1 < an для всех n;

Тогда знакочередующиеся ряды исходятся.

39. Функциональные ряды. Степенные ряды. Радиус сходимости. Интервал сходимости.

Понятие функционального ряда и степенного ряда

Обычный числовой ряд, вспоминаем, состоит из чисел:

Все члены ряда –это ЧИСЛА.

Функциональный же ряд состоит из ФУНКЦИЙ:

В общий член рядапомимо многочленов, факториалов и других подарков непременно входит буковка «икс». Выглядит это, например, так:

Как и числовой ряд, любой функциональный ряд можно расписать в развернутом виде:

Как видите, все члены функционального ряда это функции.

Наиболее популярной разновидностью функционального ряда является степенной ряд.

Определение:

Степенной ряд – это ряд, в общий член которого входят целые положительные степени независимой переменной.

Упрощенно степенной ряд во многих учебниках записывают так: , где– это старая знакомая «начинка» числовых рядов (многочлены, степени, факториалы, зависящие только от «эн»). Простейший пример:

Посмотрим на это разложение и еще раз осмыслим определение: члены степенного ряда содержат «иксы» в целых положительных (натуральных) степенях.

Очень часто степенной ряд можно встретить в следующих «модификациях»: илигде а – константа. Например:

Строго говоря, упрощенные записи степенного ряда,илине совсем корректны. В показателе степени вместо одинокой буквы «эн» может располагаться более сложное выражение, например:

Или такой степенной ряд:

Лишь бы показатели степеней при «иксАх» были натуральными.

Сходимость степенного ряда .

Интервал сходимости, радиус сходимости и область сходимости

Не нужно пугаться такого обилия терминов, они идут «рядом друг с другом» и не представляют особых сложностей для понимания. Лучше выберем какой-нибудь простой подопытный ряд и сразу начнём разбираться.

Прошу любить и жаловать степенной ряд Переменная может принимать любое действительное значение от «минус бесконечности» до «плюс бесконечности». Подставим в общий член ряда несколько произвольных значений «икс»:

Если х=1,то

Если х=-1,то

Определение 1

Числовой ряд $\sum \limits _{n=1}^{\infty }u_{n} $, члены которого имеют произвольные знаки (+), (?), называется знакопеременным рядом.

Рассмотренные выше знакочередующиеся ряды являются частным случаем знакопеременного ряда; понятно, что не всякий знакопеременный ряд является знакочередующимся. Например, ряд $1-\frac{1}{2} -\frac{1}{3} +\frac{1}{4} +\frac{1}{5} -\frac{1}{6} -\frac{1}{7} +\ldots - $ знакопеременный, но не являющийся знакочередующимся рядом.

Отметим, что в знакопеременном ряде членов как со знаком (+), так и со знаком (-) бесконечно много. Если это не выполняется, например, ряд содержит конечное число отрицательных членов, то их можно отбросить и рассматривать ряд, составленный только из положительных членов, и наоборот.

Определение 2

Если числовой ряд $\sum \limits _{n=1}^{\infty }u_{n} $ сходится и его сумма равна S,а частичная сумма равна $S_n$ , то $r_{n} =S-S_{n} $ называется остатком ряда, причём $\mathop{\lim }\limits_{n\to \infty } r_{n} =\mathop{\lim }\limits_{n\to \infty } (S-S_{n})=S-S=0$, т.е. остаток сходящегося ряда стремится к 0.

Определение 3

Ряд $\sum \limits _{n=1}^{\infty }u_{n} $ называется сходящимся абсолютно, если сходится ряд, составленный из абсолютных величин его членов $\sum \limits _{n=1}^{\infty }\left|u_{n} \right| $.

Определение 4

Если числовой ряд $\sum \limits _{n=1}^{\infty }u_{n} $ сходится, а ряд $\sum \limits _{n=1}^{\infty }\left|u_{n} \right| $, составленный из абсолютных величин его членов, расходится, то исходный ряд называется условно (неабсолютно) сходящимся.

Теорема 1 (достаточный признак сходимости знакопеременных рядов)

Знакопеременный ряд $\sum \limits _{n=1}^{\infty }u_{n} $ сходится, причём абсолютно, если сходится ряд, составленный из абсолютных величин его членов$\sum \limits _{n=1}^{\infty }\left|u_{n} \right| $.

Замечание

Теорема 1 даёт только достаточное условие сходимости знакопеременных рядов . Обратная теорема неверна, т.е. если знакопеременный ряд $\sum \limits _{n=1}^{\infty }u_{n} $ сходится, то не обязательно, что сходится ряд, составленный из модулей $\sum \limits _{n=1}^{\infty }\left|u_{n} \right| $ (он может быть как сходящимся, так и расходящимся). Например, ряд $1-\frac{1}{2} +\frac{1}{3} -\frac{1}{4} +...=\sum \limits _{n=1}^{\infty }\frac{(-1)^{n-1} }{n} $ сходится по признаку Лейбница, а ряд, составленный из абсолютных величин его членов, $\sum \limits _{n=1}^{\infty }\, \frac{1}{n} $ (гармонический ряд) расходится.

Свойство 1

Если ряд $\sum \limits _{n=1}^{\infty }u_{n} $ абсолютно сходится, то он абсолютно сходится при любой перестановке его членов, при этом сумма ряда не зависит от порядка расположения членов. Если $S"$ - сумма всех его положительных членов, а $S""$ - сумма всех абсолютных величин отрицательных членов, то сумма ряда $\sum \limits _{n=1}^{\infty }u_{n} $ равна $S=S"-S""$.

Свойство 2

Если ряд $\sum \limits _{n=1}^{\infty }u_{n} $ абсолютно сходится и $C={\rm const}$, то ряд $\sum \limits _{n=1}^{\infty }C\cdot u_{n} $ также абсолютно сходится.

Свойство 3

Если ряды $\sum \limits _{n=1}^{\infty }u_{n} $ и $\sum \limits _{n=1}^{\infty }v_{n} $ абсолютно сходятся, то ряды $\sum \limits _{n=1}^{\infty }(u_{n} \pm v_{n}) $ также абсолютно сходятся.

Свойство 4 (теорема Римана)

Если ряд условно сходится, то какое бы мы не взяли число А, можно переставить члены данного ряда так, чтобы его сумма оказалась в точности равной А; более того, можно так переставить члены условно сходящегося ряда, чтобы после этого он расходился.

Пример 1

Исследовать на условную и абсолютную сходимость ряд

\[\sum \limits _{n=1}^{\infty }\frac{(-1)^{n} \cdot 9^{n} }{n!} .\]

Решение. Данный ряд является знакопеременным, общий член которого обозначим: $\frac{(-1)^{n} \cdot 9^{n} }{n!} =u_{n} $. Составим ряд из абсолютных величин $\sum \limits _{n=1}^{\infty }\left|u_{n} \right| =\sum \limits _{n=1}^{\infty }\frac{9^{n} }{n!} $ и применим к нему признак Даламбера. Составим предел $\mathop{\lim }\limits_{n\to \infty } \frac{a_{n+1} }{a_{n} } $, где $a_{n} =\frac{9^{n} }{n!} $, $a_{n+1} =\frac{9^{n+1} }{(n+1)!} $. Проведя преобразования, получаем $\mathop{\lim }\limits_{n\to \infty } \frac{a_{n+1} }{a_{n} } =\mathop{\lim }\limits_{n\to \infty } \frac{9^{n+1} \cdot n!}{(n+1)!\cdot 9^{n} } =\mathop{\lim }\limits_{n\to \infty } \frac{9^{n} \cdot 9\cdot n!}{n!\cdot (n+1)\cdot 9^{n} } =\mathop{\lim }\limits_{n\to \infty } \frac{9}{n+1} =0$. Таким образом, ряд $\sum \limits _{n=1}^{\infty }\left|u_{n} \right| =\sum \limits _{n=1}^{\infty }\frac{9^{n} }{n!} $ сходится, а значит, исходный знакопеременный ряд сходится абсолютно.Ответ: ряд $\sum \limits _{n=1}^{\infty }\frac{(-1)^{n} \cdot 9^{n} }{n!} $ абсолютно сходится.

Пример 2

Исследовать на абсолютную и условную сходимость ряд $\sum \limits _{n=1}^{\infty }\frac{(-1)^{n} \cdot \sqrt{n} }{n+1} $.

  1. Исследуем ряд на абсолютную сходимость. Обозначим $\frac{(-1)^{n} \cdot \sqrt{n} }{n+1} =u_{n} $ и составим ряд из абсолютных величин $a_{n} =\left|u_{n} \right|=\frac{\sqrt{n} }{n+1} $. Получаем ряд $\sum \limits _{n=1}^{\infty }\left|u_{n} \right| =\sum \limits _{n=1}^{\infty }\, \frac{\sqrt{n} }{n+1} $ с положительными членами, к которому применяем предельный признак сравнения рядов. Для сравнения с рядом $\sum \limits _{n=1}^{\infty }a_{n} =\sum \limits _{n=1}^{\infty }\, \frac{\sqrt{n} }{n+1} $ рассмотрим ряд, который имеет вид $\sum \limits _{n=1}^{\infty }\, b_{n} =\sum \limits _{n=1}^{\infty }\, \frac{1}{\sqrt{n} } \, $. Этот ряд является рядом Дирихле с показателем $p=\frac{1}{2}
  2. Далее исследуем исходный ряд $\sum \limits _{n=1}^{\infty }\frac{(-1)^{n} \cdot \sqrt{n} }{n+1} $ на условную сходимость. Для этого проверим выполнение условий признака Лейбница. Условие 1): $u_{n} =(-1)^{n} \cdot a_{n} $, где $a_{n} =\frac{\sqrt{n} }{n+1} >0$, т.е. этот ряд знакочередующийся. Для проверки условия 2) о монотонном убывании членов ряда используем следующий метод. Рассмотрим вспомогательную функцию $f(x)=\frac{\sqrt{x} }{x+1} $, определенную при $x\in }